The Stata Journal (yyyy) vv, Number i, pp. 1-11

Project Management with Working Directories

Scott Long
Indiana University
Bloomington, IN/USA
jslong@indiana.edu

Draft 2017-08-09

Note: search changewd to install commands; this will be changed to search changewd.

Abstract. REVISE: Changing working directories is cumbersome in Stata, yet
having a different working directory for each project is critical for an efficient work-
flow. This article describes the cdsave, cdlist, cdinfo, and cddelete commands
that create and manage commands for quickly moving among working directories.

Keywords: st0001, cdsave, cdlist, cdinfo, cddelete, cd, working directory, man-
aging projects

Unless you work on only one project, having separate working directories for each
project is critical for an effective workflow. Sadly, Stata’s support for working directories
is awkward, inefficient, and inconsistent across operating systems. To change working
directories, you can use cd directory-name or point and use Change working directory...
in the File menu.? Differences across operating systems in how working directories are
controlled adds complexity to what should be a simple task. Stata for Mac and Unix
open in the working directory from your last session. Stata for Windows opens in the
working directory set during installation or controlled by cd in profile.do. In Window,
the cd command without a path reports the current working directory, while in other
operating systems this changes your working directory to the base level of your current
drive.

The workflow package is organized around the idea of a project. A project is a
distinct activity such as a writing a paper, taking or teaching a specific class, writing a
book, or developing a Stata command. Most simply, the workflow commands makes it
easier to change working directories as your work moves from one project to another.
For many, this will be the only feature of the commands of interest. For those doing
more complex work, other features allow you to easily set up an environment for each
project where globals are defined that specifying a path where datasets are located, asso-
ciating an URL with your project, and automatically running commands when changing
projects. The workflow package includes four commands:

cdsave creates ado files that changes the working directory and creates globals with
information about each project. These commands are named cdproject and are

1. Changing working directories in Stata is like having a powerful and elegant sports car that can
only be started by opening the trunk to insert the key.

© yyyy StataCorp LP st0001

2 Short toc article title

referred to as the cd* commands. To make these commands available regardless
of your current working directory, they ado files are saved in your PERSONAL
directory.

cdlists lists the the commands created by cdsave along with the name of the working
directorythat is set by the or a note describing the project.

cdinfo lists the globals created by the last workflow command that was run.

cddrop drops commands that are no longer needed.

Non-programmers can use these commands without knowing anything about writing
ado files. Programmers can easily customize the commands that are created to add
other features.

The workflow package was inspired by the fastcd package by Winferd (2002),
Baum’s ideas on creating globals for setting up the environment for a research project
(Ranm 2016, 78-79), and Long’s ado files for changing the working directories (ILong
P009, 111-112,117-118).

1 Using the project commands

This section begins by illustrating how the workflow package allows you to easily chang-
ing working directories. Next, I show how to modify your profile.do to control the
working directory in which Stata opens and to then quickly changing to the directory
for the project you want to work on. Next, I explain how to create robust and portable
do-files that use globals to specify the location of datasets. And finally, I show how com-
mands can be automatically executed when you change projects to further customize
your project environment.

1.1 Quickly changing the working directory

A simple example using two projects explains the most basic use of cdproject commands
to quickly move among working directories. Suppose that project A uses working di-
rectory d:/projecta/work while project B uses the directory d:/projectb/work. To
create the command cdprojecta to change the working directory, you begin by changing
to the working directory you want for your project ant then run cdsave:

. cd d:/projecta/work
d:/projecta/work

. cdsave projecta, replace
command cdprojecta saved in your personal directory

I do the same thing for project B:

. cd d:/projectb/work
d:/projectb/work

Short article author list 3

. cdsave projectb, replace
command cdprojectb saved in your personal directory

To move between directories:

. cdprojecta
d:/projecta/work

. cdprojectb
d:/projectb/work

To list the cdproject commands that I have defined,

. cdlist
cdcda - d:/active/cda2017/work/
cddesk - c:/users/jslong/desktop/
cdprojecta - d:/projecta/work/
cdprojectb - d:/projectb/work/
cdstart - d:/statastart/
cdwficpsr - d:/active/wficpsr2017/work/
cdworkflow - d:/active/workflowwd/work/

I can change to the working directory for any project by running the command. Or, I
can use the mouse to click on the name of the command I want to run. This feature is
not available on some Stata installations. If it works on your system, the names should
appear in blue.

As the number of cdproject commands increase, scanning the directories become
awkward. A more efficient approach is to use the note option when creating a command:

. cdsave projecta, note(Project A 2017) replace
command cdprojecta saved in your personal directory

Having done this for all of the commands except for cdprojectb,

. cdlist

cdcda - CDA class
cddesk - Desktop
cdprojecta - Project A 2017
cdprojectb - d:/projectb/work/
cdstart - Default starting directory
cdwficpsr - ICPSR WF class
cdworkflow - Workflow cd commands

Even when notes are set for projects, I sometimes find it useful to list the working
directories set by each command. This can be done either by running cdlist, dir
which replaces notes with the working directory.

1.2 Controlling the starting working directory

You can change the working directory in which Stata starts, but there is not a simple
way to do this. One solution is simply run cdlist as soon as Stata starts and click

4 Short toc article title

on the project where you want to start. This section shows you how to change your
profile.do to make this even simpler. It requires some effort the first time you do it,
but thereafter it is automatic.

For Windows, the starting working directory is set when you install Stata. Getting
Started with Stata for Windows explains how to change the properties sheet to change
this. The explanation is confusing and has never worked for me. In Mac, the initial
working directory is the working directory you were using when you last quit Stata. In
Unix, the only method described in Getting Started with Stata for Uniz is using the cd
command and typing the directory you want each time Stata opens.

All three operating systems will run profile.do located the STATA directory; run
sysdir to find the location. You can add a cd to profile.do or you can use the the
commands in the workflow package. The first thing to do use cdsave to create the
command cdstart to change to the working directory you want to start in. Then, add
the command cdstart to profile.do. The cdstart command will run each time Stata
starts and will set the working directory. If you change your mind on where you want
Stata to start, you can create a new cdstart command with cdsave ..., ... replace.

If you work on many projects at the same time, you are likely to change directories
immediately after you start Stata. To make this easier, you can add cdlist to your
profile.do. For example,

cdstart
cdlist

If you want to prevent an error in case the workflow commands have not been installed
on the computer you are using, you can use the more robust commands:

noisily di _new ". cdstart"
capture noisily cdstart
capture noisily cdlist

1.3 Robust specification of data paths

Stata’s use command loads a dataset from the working directory unless a path has
been specified. This path can point to a directory on your computer or an URL. While
I prefer to keep the datasets related to a project in that project’s working directory, in
some cases this is not possible. For example, I might need to access data over the web
or in a collaboration multiple people might need common access to datasets on a shared
directory. Or, you might simple prefer to have your data stored someplace other than
the working directory. In order for your do-files to run on other computers, you cannot
hard code a directory location within your do-files. That is, you cannot do something
like use d:/data/binlfp4, clear since your do-file will not run on a computer that
does not have exactly the same directory structure, including drive names. Recently, the
director of our statistical consulting center showed me a message a client received from
an editor asking him/her to resubmit the script files for an article after removing the
hard coding of directories. Globals can be used so that your do-files can load data from

Short article author list)

locations other than your working directory, but that also allow do-files to be portable
across computers. To do this, I create a global with the path where data is saved. For
example,

global S_cddata "d:/datasets/"

This global is not created in my do-file for reasons explained below. My do-file uses
data with the command:

use "${S_cddataltbinlfp4", clear

which is interpreted as:
use "d:/datasets/binlfp4", clear

If the global was not defined, the command would be interpreted as:
use "binlfp4", clear

Or, if I am working on a computer with a different file structure, my do-file will still
run if I first create the global. For example,

global S_cddata "c:/users/jslong/documents/datasets/"

My globals defining the path always end with /. If I did not do this, I would load my
dataset with:

use "${S_cddatal}/binlfp4", clear
Indeed, I could even remove the parentheses:
use "$S_cddata/binlfp4", clear

While this looks simpler, an error occurs if the global has not been defined since the
command is interpreted as

use "/binlfp4", clear

which causes an error.

When creating cd project commands there are three ways to add information about
data locations to your project environment. The dataset (path) options specifies a path
where datasets are saved. For example,

cdsave census, data(k:/txcdc/census2000/datasets)

This path is saved in the global S_cddata. A web address can added with the url (address)
option. For example,

cdsave spost, url(http://www.indiana.edu/~jslsoc/stata/spex_data/)

Since you might want more than two data locations, the user (string) can be used to
creates the global S_cduser that could hold another path.

6 Short toc article title

You can add both a data path, an URL, and a user path at the same time. For
example,

cdsave paths, note(Example of data paths) data(d:/data) ///
url(http://www.indiana.edu/"~jslsoc/stata/spex_data) ///
user (m: /bssr/datadepository/) replace

The cdsave command will automatically add an ending / to the path or URL, but you
must add it yourself with the user() option since this option could be used to hold
other information where you do not want an ending slash.

After the data locations are added, a single do-file could load data from multiple
locations:

use "${S_cddata}binlfp4", clear
(output omitted)

use ${S_cdurl}nomocc4, clear
(output omitted)

use "${S_cduser}ordwarmd", clear
(output omitted)

use "couart4", clear
(output omitted)

The quotes are needed in case your path includes a space.

You might also want different data directories for source data and derived datasets:

cdsave paths, note(Example of data paths) ///
data(d:/data/source) ///
user(d:/data/derived) ///
url(http://www.indiana.edu/~ jslsoc/stata/spex_data) replace

then:

use "${S_cddatalbinlfpd", clear
(output omitted)

save "${S_cduser}binlfp5", replace
(output omitted)

The cdinfo command list the globals that are currently active. For example,

. cdinfo
S_cdcmd: cdpaths
S_cdnote: Example of data paths
S_cdwd: d:/active/project/work/
S_cdauto:
S_cddata: d:/data/source
S_cdurl: http://www.indiana.edu/"~ jslsoc/stata/spex_data/

S_cduser: d:/data/derived/

Notice that all data locations are saved using / which works in Win, Mac, and Unix. If
you enter a path using \ it is converted to /. The list of globals can also be obtained
by adding the details option to either cdsave or cdlist.

Short article author list 7

1.4 Further customization of your research environment

The autorun(command) option in cdsave lets you add a command that is run at the
end of the cdproject command. Since it is the last command run, it can use any of the
globals created by the command. The command can be an internal Stata command.
For example,

cd d:/datasets
cdsave autodir, note(Automatically list datasets) ///
data(d:/datasets) auto(dir $S_datax.dta) replace

When I run cdautodir, the available datasets are listed:

. cdautodir
d:/datasets
51.1k 9/08/16 8:48 Dbinlfp4.dta
30.6k 4/24/14 6:02 couartd.dta
18.6k 11/13/13 9:21 couexposured.dta
69.4k 11/20/13 15:31 gssclass4.dta
75.9k 3/02/14 11:19 gsskidvalue4.dta
39.0k 3/12/14 13:26 partyid4.dta
32.0k 3/02/14 11:03 scienced.dta
935.4k 3/04/14 13:16 svyhrs4.dta
12.3k 4/01/14 7:14 traveld.dta
10.7k 4/01/14 7:14 travel4case.dta
1563.6k 8/11/14 15:08 wlsrank4.dta
70.3k 3/02/14 10:59 wlsrnk4.dta

Or, you could automatically load a dataset:
cdsave autouse, data(d:/datasets) auto(use $S_databinlfp4, clear)

Then,

. cdautouse
d:/datasets
(binlfp4.dta | Mroz data on labor force participation of women | 2014-10-20)

Or you could automatically run a do-file associated with your project that could be
arbitrarily complex:

cdsave projectc, autorun(do projectc-setup.do)

2 Programming features used by the workflow package

The workflow package depends on several features of Stata to allow the commands
to run regardless of your current working directory and for the globals defining your
project environment to persist after dropping macros.

8 Short toc article title

Dynamically creating ado files

Non-programmers are not likely to learn how to write ado files in order to simplify
changing working directories and programmers are unlikely to want to take the time to
write these commands. Accordingly, cdsave use file write to create the ado files with
commands for changing projects. Unless you want to customize what these commands
do, there is no reason to change them.

The PERSONAL directory

cdsave saves the ado files in the PERSONAL directory so that the commands will run
regardless of your current working directory. If PERSONAL is not defined or the directory
specified in PERSONAL does not exist, cdsave exists with an error. To learn more, run
sysdir to determine where your PERSONAL is located. If no directory is listed or it
points to a directory that does not exist, you can set the directory with sysdir set;
enter help sysdir for details.

Use of system macros

The globals that are created by cdproject commands to define your project environment
need to persist as long as you are working on that project. To prevent these globals from
being remove if you run macro drop all, the global names begin with S_cd. Macros
that being with S_ can only be deleted by using macro drop S_name or macro drop
S_x. Critical system macros will not be dropped. The following globals are created by
each cd* command:

S_cdauto User specified command executed by cdproject.
S_cdcmd Name of the current cdproject command.
S_cddata Path for using datasets.

S_cdnote Note associated with cdproject.

S_cdurl Web address for using datasets.

S_cduser Any string.

S_cdwd Working directory set by cdproject.

3 cdsave: creating cd commands

The cdsave command creates a cdproject . ado file that is saved in the PERSONAL direc-
tory. When no options are specified, the only thing that the cdproject command does
is change the working directory to the working directory that was active at the time
cdsave was run. The syntax is:

cdsave cdproject [, note(string) datapath(data-path) url(url)

autorun(command) details user(string) replace}

Short article author list 9

where project is the mnemonic for your project. Commands created by cdsave must
begin with the letters cd, but you can enter the name without the cd prefix. For
example, both cdsave myproject and cdsave cdmyproject can be used.

Options

note(string) creates a note to describe the current project. If no note is specified, the
working directory being set is used as the note. Notes are shown by cdlist to help
you remember what each cd command does.

datapath(data-path) is a path where datasets are located. This path is stored in the
global S_cddata. You can load a dataset from this path with use ${S_cddata}filename

url (web-address) is a web address for datasets. The URL is stored in the global
S_cdurl. You can load datasets from this location with use ${S_cdurl}filename.

user (string) can by anything. For example, you could use it as a second data directory
or a second URL. The string is stored in the global S_cduser. If it contained a path,
you could load datasets using use ${S_cduser}filename

autorun(command) is a command that will be run by cdproject. This can be an official
Stata command, the name of an ado file you have written, or a do-file that is to be
run, such as auto(do projectstartup.do).

details lists the globals that will be created when cdproject is run.
replace overwrite cdproject.ado if it exists.

Globals created by cdproject commands are not removed by clear all or macro drop
—all. To remove them you must use macro drop name, such as macro drop S_cddata
or macro drop S_cdx.

4 The cdlist command

cdlist lists the names of ado-files in PERSONAL begin with cd along with the note
for each project. If you click on the name of a command, which is shown in blue, the
command is executed. The syntax is:

cdlist [, directories details }

If the working directory for a command is not found, a warning is given.

Options

details displays the S_cd globals created by each command.

directories displays the directory being set even if a note is defined.

10

Short toc article title

Example The names of each command are listed in blue in the Results window. You
can click on them to run the command. If the note() option was not used in creating
command, such as cdbbb below, the working directory for the project is listed.

. cdlist

cdaaa
cdbbb
cddesk
cdproject
cdspost
cdstart
cdworkflow

project A

d:/bbb/work/

Desktop

My project

SPost development

Default working directory
Commands for managing projects

5 The cdinfo commands

This command simply lists the S_cd* macros associated with last cdproject command.

cdinfo

There are no options.

Example

. cdproject

d:\project\work

. cdinfo
S_cdcmd:
S_cdnote:
S_cdwd:
S_cdauto:
S_cddata:
S_cdurl:
S_cduser:

cdproject
My project
d:/project/work/

d:/project/work/
http://www.indiana.edu/"~ jslsoc/stata/spex_data/

6 The cddrop command

cddrop drops, deletes, or restores cdproject.ado files in PERSONAL.

cddrop cdproject | _all [, delete restore }

cdproject is the name of the command whose ado file in PERSONAL is modified. By

Short article author list 11

default, cddrop cdproject renames cdproject.ado to cdproject.dropped. After the com-
mand is renamed, it will no longer run. With the delete option the ado file is deleted.
A file that has been renamed can be restored with the restore option. For example,
cddrop cdexample, restore renames cdexample.dropped to cdexample.ado. The
abbreviation _all will drop or restore all cd commands.

Options

delete erase the ado file for the command.

restore renames cdproject .dropped to cdproject .ado.

7 Conclusions

I hope that readers find these commands useful for developing an efficient workflow that
supports producing reproducible results. As the power of Stata increases, I hope they
will add features that make my commands obsolete!

About the authors

Scott Long is ...

12 Short toc article title

8 References

Baum, C. F. 2016. An introduction to Stata programming, vol. 2. 2nd ed. Stata Press
College Station.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX:
Stata Press.

Winters, N. 2002. fasted: module to automate changing directories.
http://www.nd.edu/~rwilliam/stata/gologit2.pdf..

	Project Management with Working Directoriesto.44em.Short article author list
	Using the project commands
	Quickly changing the working directory
	Controlling the starting working directory
	Robust specification of data paths
	Further customization of your research environment

	 Programming features used by the workflow package
	Dynamically creating ado files
	The PERSONAL directory
	Use of system macros

	cdsave: creating cd commands
	The cdlist command
	The cdinfo commands
	The cddrop command
	Conclusions
	References

