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Road map for talk

Goals

1. Present new methods of interpretation using marginal effects

2. Show how to implement these methods with Stata

Outline

1. Statistical background

� Binary logit model

� Standard definitions of marginal effects

� Generalizations to concept of marginal effects

2. Stata commands

� Estimation

� Post-estimation using margins and lincom

� SPost13’s m* commands

3. Example modeling the occurrence of diabetes
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Logit model

Outcome of probability or odds

π(x) = Prob(y = 1 | x) and Ω(x) = π(x)/[1 − π(x)]

Multiplicative in odds

Ω(x) =
π(x)

1 − π(x)
= exp(x′β) = exp(β0) × exp(β1x1) × ...

Odds ratio: multiplicative change in Ω(x) for change in xk

holding other variables constant.

Nonlinear in probability

π(x) =
exp (x′β)

1 + exp (x′β)
= Λ(x′β) = Λ(β0 + β1x1 + ...)

Discrete change: additive change in probability for change in xk

holding other variables at specific values.
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Definition of discrete change

1. xk changes from start to end

2. Remaining x ’s held constant at specific values x = x∗

3. Discrete change DC(xk)

Δπ(x)

Δxk(start → end)
= π(xk =end, x=x∗) − π(xk =start, x=x∗)

4. Interpretation

For a change in xk from start to end, the probability changes by

DC(xk), holding other variables at the specified values.

5. Everything that follows could be done using marginal changes

∂ π(x)

∂ xk
=

∂ Λ(β0 + β1x1 + ...)

∂xk
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Summarizing the effect of xk

Since Δπ / Δxk depends on where it is evaluated, how can it be summarized?
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Summary measures

DC at the mean: change at the center of the data

DCM(xk) =
Δπ(x = x)

Δxk(start → end)

For someone who is average on all variables, increasing xk from
start to end changes the probability by DCM(xk).

Average DC: average change in estimation sample

ADC(xk) =
1

N

N∑
i=1

Δπ(x = xi )

Δxik(start → end)

On average, increasing xk from start to end changes the probability
by ADC(xk).

Generalized discrete change

My talk focuses on generalizing these standard measures
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Variations in computing discrete change
Standard effects shown in black; generalized effects in red

Conditional and average change

Conditional on specific values

Averaged in the estimation sample

Averaged in a subsample

Amount of change

Constant change

Proportional change

Change as function of x ’s

Change of a component in a multiplicative measure

Number of variables changed

One variable

Two or more related variables
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Stata requirements

1. Stata 14.1 (most things can be done with Stata 13)

2. search spost13 ado to install SPost13

3. search eusmex to download example, dataset, and slides
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Stata commands

Steps in analysis using official Stata

1. Fit model using factor syntax

logit depvar i.female c.age c.age#c.age

2. Store estimates using estimates store Model

3. Make predictions from regression using margins, post

� post replaces regression results with margins results

4. Estimate linear functions of predictions using lincom

5. estimates restore Model restores the regression estimates

Using SPost13

1. mchange, mtable, mgen and mlincom are SPost wrappers

2. They simplify things, but everything can be done without them
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Modeling diabetes

Cross-sectional data from Health and Retirement Survey1

. use hrs-gme-analysis2, clear
(hrs-gme-analysis2.dta | Health & Retirement Study GME sample | 2016-04-08)

Variable Mean Min Max Label

diabetes .205 0 1 Respondent has diabetes?

age 69.3 53 101 Age

bmi 27.9 10.6 82.7 Body mass index (weight/height^2)

weight 174.9 73 400 Weight in pounds
height 66.3 48 89 Height in inches

white .772 0 1 Is white respondent?

female .568 0 1 Is female?

hsdegree .762 0 1 Has high school degree?

N=16,071

1Steve Heeringa generously provided the data used in Applied Survey Data Analysis
(Heeringa et al., 2010). Complex sampling is not used in my analyses.
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Two logit model specifications

1. Diabetes

1.1 Given the diseases burden, small effects are substantively important

1.2 With N=16,071 small effects are statistically significant

2. Two models that vary in how body mass is included

3. Model Mbmi uses the BMI index

logit diabetes c.bmi ///
i.white c.age##c.age i.female i.hsdegree

estimates store Mbmi

4. Model Mwt uses height and weight

logit diabetes c.weight c.height ///
i.white c.age##c.age i.female i.hsdegree

estimates store Mwt

5. The estimates are...
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Odds ratios and p-values: nuisance parameters...

Variable Mbmi Mwt

bmi 1.1046*

weight 1.0165*

height 0.9299*

white
White 0.5412* 0.5313*

age 1.3091* 1.3093*

c.age#c.age 0.9983* 0.9983*

female
Women 0.7848* 0.8743#

hsdegree
HS degree 0.7191* 0.7067*

_cons 0.0000* 0.0001*

bic 14991.26 14982.03

Note: # significant at .05 level; * at the .001 level.
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Average discrete change

1. After estimation I always run mchange

. estimates restore Mbmi

. mchange, amount(sd) // compute average discrete change

logit: Changes in Pr(y) | Number of obs = 16071

Change p-value

bmi
+SD 0.097 0.000

white
White vs Non-white -0.099 0.000

(output omitted )

2. Interpretation

Increasing BMI by one standard deviation on average increases the
probability of diabetes .097 (p < .001).

On average, the probability of diabetes is .099 less for white respondents
than non-white respondents (p < .001).

3. How were the DCs computed?
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Tool: margins, at( ... ) and atmeans

1. By default, margins

1.1 Makes predictions for every case conditional on observed values

1.2 These conditional predictions are then averaged

2. Options allow counterfactual predictions

3. Average prediction imagining everyone is white

margins, at(white=1)

4. Average predictions under two conditions

margins, at(white=1) at(white=0)

5. Conditional prediction for someone white and average for other variables

margins, at(white=1) atmeans
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ADC for binary xk : ADC(white)

1. ADC(white) is the difference in average probabilities

ADC = 1
N

∑
i π(white = 1, x = xi ) − 1

N

∑
i π(white = 0, x = xi )

2. Compute the two averages

. margins, at(white=0) at(white=1) post

Expression : Pr(diabetes), predict()

1._at : white = 0

2._at : white = 1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2797806 .0073107 38.27 0.000 .265452 .2941092
2 .1805306 .0034215 52.76 0.000 .1738245 .1872367

3. Option post save the predictions to matrix e(b)
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ADC for binary xk : ADC(white)

4. The posted predictions from margins

. matlist e(b)

1. 2.
_at _at

y1 .2797806 .1805306

5. lincom computes ADC(white) matching prior results

. lincom _b[2._at] - _b[1._at]

( 1) - 1bn._at + 2._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -.09925 .0082362 -12.05 0.000 -.1153927 -.0831073

On average, being white decreases the probability of diabetes by .099
(p < .001).
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Tool: margins, at( varnm = generate(exp) )

1. at( varnm = generate(exp ) ) is powerful but poorly documented

2. Trivially, average prediction at observed values of bmi

margins, at( bmi = gen(bmi) )

3. Average prediction at the observed bmi plus 1

margins, at( bmi = gen(bmi + 1) )

4. Two average predictions

margins, at( bmi = gen(bmi) ) at( bmi = gen(bmi + 1) )

5. Average at observed plus standard deviation

1] quietly sum bmi // summary statics

2] local sd = r(sd) // retrieve standard deviation

3] margins, at( bmi = gen(bmi + ‘sd’) )
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ADC for continuous xk : ADC(bmi+ sd)

1. Compute probabilities at observed bmi and observed+ sd

. quietly sum bmi

. local sd = r(sd)

. margins, at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Expression : Pr(diabetes), predict()

1._at : bmi = bmi
2._at : bmi = bmi + 5.770835041238605

Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2047166 .0030338 67.48 0.000 .1987704 .2106627
2 .3017056 .005199 58.03 0.000 .2915159 .3118954

2. ADC(bmi+ sd)

. lincom _b[2._at] - _b[1._at]

( 1) - 1bn._at + 2._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0969891 .0035648 27.21 0.000 .0900023 .1039759

On average, increasing BMI by one standard deviation, about 6 points,
increases the probability of diabetes by .097 (p < .001).
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Tool: mlincom simplifies lincom

1. lincom requires column names from e(b)

. lincom _b[2._at] - _b[1._at]

( 1) - 1bn._at + 2._at = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0969891 .0035648 27.21 0.000 .0900023 .1039759

2. mlincom uses column numbers in e(b) or rows in margins output

. mlincom 2 - 1, stats(all)

lincom se zvalue pvalue ll ul

1 0.097 0.004 27.208 0.000 0.090 0.104

3. Why use mlincom?

lincom ( b[2. at#1.white] - b[1. at#1.white]) ///

- ( b[2. at#0.white] - b[1. at#0.white])

mlincom (4-2) - (3-1)
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Generalized measures of discrete change

1. DCM and ADC can be computed more easily with other commands

2. However, the commands showed are essential tools for computing
generalized marginal effects

3. Examples of generalizations

3.1 Proportional change in xk

3.2 Changing linked variables

3.3 Distribution of effects

3.4 Testing effects within a model

3.5 Testing effects across models

3.6 Testing effects across groups

3.7 Changing a component of an interaction
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Tool: mtable wrapper for margins

1. margins output is complete, not compact

2. mtable executes margins and simplifies the output and creates tables

2.1 To list the margins commands used, add option commands

2.2 To list margins and mtable output, add option details
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Proportional change in xk

1. Body mass is measured using height and weight

logit diabetes c.weight c.height ///
i.white c.age##c.age i.female i.hsdegree

estimates store Mwt

2. ADC(weight+25) increases weight by 25 pounds, which is

: a 25% increase if you weigh 100 pounds

: an 8% increase if you weigh 300 pounds

3. Does increasing weight proportionally make more substantive sense?

4. We compute ADC(weight+25) first, then ADC(weight*1.14)
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Proportional change in xk : ADC(weight+25)

1. Compute ADC(weight +25)

. estimates restore Mwt

. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.271

. mlincom 2 - 1, rowname(ADC add)

(output omitted )
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Proportional change in xk : ADC(weight*1.14)

2. A simple change computes ADC(weight * 1.14)

. estimates restore Mwt

. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.273

. mlincom 2 - 1, rowname(ADC pct) add

lincom pvalue ll ul

ADC add 0.067 0.000 0.062 0.071
ADC pct 0.068 0.000 0.063 0.073

3. The effects are deceptively similar as shown below
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Discrete change with linked variables

Mathematically linked variables

1. With polynomials multiple variables must change together

Δπ(x)

Δage(50 → 60)
= π(age=60, agesq=602)−π(age=50, agesq=502)

2. With factor syntax margins handles this automatically

Substantively linked variables

1. Sometimes it makes sense to change multiple variables that are not
mathematically linked

2. If two people have the same body mass, is the larger person more likely
to have diabetes (the person who it taller and proportionally heavier)?

3. I compute an effect where height and weight change proportionally

4. Use height to predict weight

5. Use at(...=gen()) to change height and weight together
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Linked variables: ADC(height, weight)

1. Regress weight on height and height squared

. regress weight c.height##c.height, noci

(output omitted )

R-squared = 0.2575

weight Coef. Std. Err. t P>|t|

height -6.338708 1.61073 -3.94 0.000
c.height#c.height .0855799 .0120867 7.08 0.000

_cons 217.5991 53.5548 4.06 0.000

2. Save the estimates

. scalar b0 = _b[_cons]

. scalar b1 = _b[height]

. scalar b2 = _b[c.height#c.height]

3. Weight can be predicted

weighthat = b0 + b1*height + b2*height#height
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Linked variables: ADC(height, weight)

4. at( gen(...) ) predicts weight for a 6 inch change in height

1 ] . mtable, post ///

2a] > at( height = gen(height) /// observed
2b] > weight = gen(weight) ) ///

3a] > at( height = gen(height+6) /// +6 inches height
3b] > weight = gen(b0 + b1* (height+6) /// +estimated weight
3c] > + b2*((height+6)^2)) ) //

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.208

. mlincom 2 - 1

lincom pvalue ll ul

1 0.004 0.601 -0.010 0.017

5. Interpretation

There is no evidence that being physically larger without greater
body mass contributes to the incidence of diabetes.
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Distribution of effects: limitations of summaries

1. ADC and DCM use averages

2. Average discrete change

ADC(x1) =
1

N

∑
i

[
Δπ

Δ(x1|x = xi )

]

3. Discrete change at the mean

DCM(x1) =
Δπ

Δ(x1|x = x)
where xk =

1

N

∑
i

xik

4. Sometimes the averages distort the effect of a variables

5. Age has a large impact on diabetes, but ADC and DCM are small. Why?

Change p-value

ADC(age+10) 0.018 0.000
DCM(age+10) 0.018 0.000
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Distribution of effects: ADC and DCM
Hypothetical data
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Undocumented Tool: margins, generate()

1. margins, generate(stub ) creates variables containing predictions for
each observation

. margins, generate(Prob)

Predictive margins Number of obs = 16,071

Expression : Pr(diabetes), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .2047166 .0030316 67.53 0.000 .1987747 .2106584

. sum Prob1

Variable Obs Mean Std. Dev. Min Max

Prob1 16,071 .2047166 .1229016 .0123593 .9067207

2. For details, help margins generate
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Distribution of effects: ADC(age)

1. To evaluate ADC(age) look at the distribution of DC(age i )

2. Create a variable with the DC for each observation

1a] margins, generate(PRage) ///

1b] at(age = gen(age)) at(age = gen(age+10))

2a] gen DCage10 = PRage2 - PRage1

2b] lab var DCage10 "DC for 10 year increase in age"

3. Since age-squared was specified using factor syntax, when age is
changed age#age is automatically changed

4. A histogram shows why ADC(age) is small
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Distribution of effects: ADC(age)
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1. The average effect of age is small

2. The effect is large and negative for some people

3. The effect is large and positive for others
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Distribution of effects: ADC(weight)

1. Early we computed ADC(weight+25) and ADC(weight*1.14)

ADC

ADC add 0.067
ADC pct 0.068

2. The ADCs are similar but the distributions are quite different
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Distribution of effects: limitations of summaries

1. ADC and DCM can be useful summaries, but in nonlinear models
any summary measures can be misleading

2. The distribution of effects is valuable for assessing effects

3. This is simple with margins, generate()

4. Long and Freese (2014) show how do this in earlier versions of Stata
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Comparing ADCs for two variables

1. Consider ADC(race) and ADC(bmi+sd)

. est restore Mbmi
(results Mbmi are active now)

. mchange bmi white, amount(sd)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

Change p-value

bmi
+SD 0.097 0.000

white
White vs Non-white -0.099 0.000

2. Do the effects have the same size?

3. To answer this, the effects must be estimated simultaneously
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Comparing ADC(white) and ADC(bmi)

4. Merge the commands for ADC(white) and ADC(bmi)

. quietly sum bmi

. local sd = r(sd)

. margins, at(white = 0) at(white = 1) ///
> at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Predictive margins Number of obs = 16,071
Model VCE : OIM

Expression : Pr(diabetes), predict()

1._at : white = 0

2._at : white = 1

3._at : bmi = bmi

4._at : bmi = bmi + 5.770835041238605

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2797806 .0073107 38.27 0.000 .265452 .2941092
2 .1805306 .0034215 52.76 0.000 .1738245 .1872367
3 .2047166 .0030338 67.48 0.000 .1987704 .2106627
4 .3017056 .005199 58.03 0.000 .2915159 .3118954
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Comparing ADC(white) and ADC(bmi)

5. Compute ADCs and test equality

. qui mlincom (2-1), rowname(ADC white)

. qui mlincom (4-3), rowname(ADC bmi) add

. mlincom (2-1) + (4-3), rowname(Sum of ADCs) add

lincom pvalue ll ul

ADC white -0.099 0.000 -0.115 -0.083
ADC bmi 0.097 0.000 0.090 0.104

Sum of ADCs -0.002 0.809 -0.021 0.016

6. Conclusion

The health cost of being non-white is equivalent to a standard deviation
increase in body mass (p > .80).
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Comparing ADCs across models

1. Is ADC(female) the same across model specifications?

2. Tool: margins, dydx(female) computes DC(female) since i.female

3. Compute ADC(female) for two models separately

. qui logit diabetes c.bmi i.female i.white i.female c.age##c.age i.hsdegree

. qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear

. qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree

. mtable, dydx(female) rowname(ADC(female) with Mwt) below

Expression: Pr(diabetes), predict()

d Pr(y)

ADC(female) with Mbmi -0.036
ADC(female) with Mwt -0.020

4. To test if effects are equal, they must be estimated simultaneously
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Tool: simultaneous model estimation with gsem

1. gsem simultaneously fits multiple generalized linear models

2. The obvious approach does not work since

gsem ///
(diabetes <- c.bmi i.female, logit) ///
(diabetes <- c.weight c.height i.female, logit)

is interpreted as

gsem ///
(diabetes <- c.bmi i.female c.weight c.height, logit)

3. The solution is a cloned outcome for each model

clonevar lhsbmi = diabetes // outcome for Mbmi

clonevar lhswt = diabetes // outcome for Mwt
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Comparing ADC(female) across models

1. Fit two models simultaneously with robust standard errors

. gsem ///
> (lhsbmi <- c.bmi i.female i.white c.age##c.age i.hsdegree, logit) ///
> (lhswt <- c.weight c.height i.female i.white c.age##c.age i.hsdegree ///
> , logit) ///
> , vce(robust)

Generalized structural equation model Number of obs = 16,071

Response : lhsbmi
Family : Bernoulli
Link : logit

Response : lhswt
Family : Bernoulli
Link : logit

Log pseudolikelihood = -14914.007

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

lhsbmi <-
bmi .099441 .003747 26.54 0.000 .092097 .1067851

female
Women -.2423701 .0413006 -5.87 0.000 -.3233177 -.1614225

(output omitted )
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Comparing ADC(female) across models

2. Simultaneously estimate ADC(female) for both models

. margins, dydx(female) post

Average marginal effects Number of obs = 16,071
Model VCE : Robust

dy/dx w.r.t. : 1.female
1._predict : Predicted mean (Respondent has diabetes?), predict(pr

outcome(outcome(lhsbmi))
2._predict : Predicted mean (Respondent has diabetes?), predict(pr

outcome(lhswt))

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.female
_predict

1 -.0360559 .0061773 -5.84 0.000 -.0481631 -.0239487
2 -.0199213 .0089687 -2.22 0.026 -.0374997 -.0023429

Note: dy/dx for factor levels is the discrete change from the base level.

3. The estimates are identical to those estimate earlier
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Comparing ADC(female) across models

4. Testing if the effects are equal

. mlincom 1-2, stats(all)

lincom se zvalue pvalue ll ul

1 -0.016 0.006 -2.526 0.012 -0.029 -0.004

5. Interpretation

The effect of being female is significantly larger when body mass is
measured with the BMI index then when height and weight are used to
measure body mass (p < .02).
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Comparing effects across models: summary

1. Jointly fitting models and estimating effects with margins is a general
approach for comparing effects across models (Mize et al., 2009)

2. The gsem command

2.1 Fits GLM models only

2.2 margins is slow (grumble, grumble), but easy to use

3. Alternatively, the suest command

3.1 Fits a much wider class of models

3.2 margins is fast, but hard to use (grumble, grumble)

4. suest and gsem produce identical results

5. Specialized commands like khb (Kohler et al., 2011) are available
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Comparing ADC across subsamples

1. An ADC is typically averaged over the entire sample

2. By averaging within groups, we can examine effects for different groups

� Is the average effect of BMI the same for whites and non-whites?

3. To test if effects are equal across groups, we estimate the two effects
simultaneously margins, over()
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Tool: margins, over()

1. By default, margins averages all observations

2. Average for the non-white subsample

margins if white==0, ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))

3. Average for the white subsample

margins if white==1, ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))

4. Average for both subsamples simultaneously

margins, over(white) ///
at(bmi = gen(bmi)) at(bmi = gen(bmi+‘sd’))
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Comparing ADC(bmi) by race

1. To compute components for group specific ADC(bmi)

. margins, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post

Expression : Pr(diabetes), predict()
over : white

1._at : 0.white
bmi = bmi

1.white
bmi = bmi

2._at : 0.white
bmi = bmi + 5.770835041238605

1.white
bmi = bmi + 5.770835041238605

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at#white
1#Non-white .3097249 .0072773 42.56 0.000 .2954616 .3239881

1#White .173629 .0032892 52.79 0.000 .1671824 .1800757
2#Non-white .4302294 .009226 46.63 0.000 .4121468 .448312

2#White .2636564 .0054903 48.02 0.000 .2528955 .2744172
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Comparing ADC(bmi) by race

2. Computing ADC(bmi) by group

. qui mlincom 4-2, clear rowname(White: ADC bmi)

. mlincom 3-1, add rowname(Non-white: ADC bmi)

lincom pvalue ll ul

White
ADC bmi 0.090 0.000 0.083 0.097

Non-white
ADC bmi 0.121 0.000 0.112 0.129

3. A second difference compares effects for the groups

. mlincom (4-2) - (3-1), rowname(Difference: ADC bmi)

lincom pvalue ll ul

Difference
ADC bmi -0.030 0.000 -0.034 -0.027

4. Interpretation

The average effect of BMI is significantly larger for non-whites than
whites (p < .001).
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Decomposing an effect

1. The BMI index measures relative weight

BMI = 703 × weightlb
height2

in

= 703 × weight × height−1 × height−1

2. With BMI in the model, can we compute the effect of weight change?

� Why do this? DC(weight) is clearer to patients than DC(bmi)
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Decomposing BMI: BMI is an interaction

1. Create components of BMI

generate heightinv = 1/height
label var heightinv "1/height"

generate S = 703
label var S "scale factor to convert from metric"

2. These models are identical

logit diabetes c.S#c.weight#c.heightinv#c.heightinv ///
i.white c.age##c.age i.female i.hsdegree

estimates store MbmiFV

logit diabetes c.bmi i.white c.age##c.age i.female i.hsdegree
estimates store Mbmi

3. The estimates are identical

Variable MbmiFV Mbmi

c.S#c.weight#
c.heightinv#
c.heightinv 1.104553 <== odds ratio for BMI

0.000
bmi 1.1045533 <== odds ratio for BMI

0.000
white

White .5411742 .5411742
0.000 0.000
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Decomposing BMI: ADC(weight)

4. margins with factor syntax makes the rest easy

5. ADC(weight) in MbmiFV changes only weight

. qui estimates restore MbmiFV

. mchange weight, amount(sd) delta(25)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

Change p-value

weight
+25 0.065 0.000
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Conclusions

Model interpretation and Stata

1. Too often interpretation ends with estimated coefficients

� Interpretation using predictions is more informative

� I think of regression coefficients as “nuisance parameters”

2. Methods of interpretation must be practical

� margins makes hard things easy, very hard things merely hard
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Conclusions

Which method of interpretation?

1. mchange makes it easy make marginal effects a routine part of analysis;
marginal effects are almost always more useful than odds ratios

2. Generalized marginal effects can be tailored to your research

3. But, marginal effects might not be the best method of interpretation

4. Tables and plots might be more useful (Long and Freese, 2014) and are
easy with margins and the m* commands

5. The best interpretation is motivated by your substantive question
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Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy
Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker
provided valuable help. Mistakes are my own.

Relevant publications There is a large literature on marginal effects and
interpreting models. Long and Freese (2014) include many citations. The
references directly related to this presentation are given below.
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Additional examples

1. Comparing ADC(weight) across models

2. Discrete change with polynomials

3. Comparing ADCs across models with suest

4. Comparing groups: outcomes and marginal effects

5. Computing DCMs

6. Comparing DCRs

55 / 92

Comparing ADC(weight) across models

1. Recall that

BMI = 703 × weightlb
height2

in

2. Create components of BMI

generate heightinv = 1/height

label var heightinv "1/height"

generate S = 703

label var S "scale factor to convert from metric"

3. These models are identical

logit diabetes c.bmi i.white c.agec.age i.female i.hsdegree

logit diabetes c.S#c.weight#c.heightinv#c.heightinv ///

i.white c.age##c.age i.female i.hsdegree
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Comparing ADC(weight) across models

4. To compare ADC(weight) requires joint estimation

. clonevar lhsbmi = diabetes

. clonevar lhswt = diabetes

. gsem ///
> (lhsbmi <- c.s#c.weight#c.heightinv#c.heightinv ///
> i.white c.age##c.age i.female i.hsdegree, logit) ///

> (lhswt <- c.weight c.height ///
> i.white c.age##c.age i.female i.hsdegree, logit) ///

> , vce(robust)

Generalized structural equation model Number of obs = 16,071

Response : lhsbmi
Family : Bernoulli
Link : logit

Response : lhswt
Family : Bernoulli
Link : logit

Log pseudolikelihood = -14914.007

(output omitted )
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Comparing ADC(weight) across models

5. Computing the average predictions for both equations

. margins, at(weight=gen(weight)) at(weight=gen(weight+25)) post

Predictive margins Number of obs = 16,071
Model VCE : Robust

1._predict : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))
2._predict : Predicted mean (Diabetes?), predict(pr outcome(lhswt))

1._at : weight = weight

2._at : weight = weight+25

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_predict#_at
1 1 .2047166 .0030419 67.30 0.000 .1987546 .2106786
1 2 .2701404 .0044591 60.58 0.000 .2614007 .27888
2 1 .2047166 .0030394 67.35 0.000 .1987595 .2106737
2 2 .271305 .0044054 61.58 0.000 .2626705 .2799394
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Comparing ADC(weight) in two models

6. ADC(weight) for each model and their difference

. qui mlincom 2-1, rowname(Mbmi ADC) clear

. qui mlincom 4-3, rowname(Mwt ADC) add

. mlincom (4-3) - (2-1), rowname(Difference) add

lincom pvalue ll ul

Mbmi ADC 0.065 0.000 0.061 0.070
Mwt ADC 0.067 0.000 0.062 0.071

Difference 0.001 0.029 0.000 0.002

7. Conclusion

The effect of weight on diabetes are nearly identical whether body mass
is measured with BMI or with height and weight (p = .03).
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Discrete change with polynomials

1. With polynomials multiple variables must change together

2. For example,

Δπ(x)

Δage(50 → 60)
= π(age=60, agesq=602)−π(age=50, agesq=502)

3. This can be computed two ways

3.1 Automatically with factor syntax

3.2 Explicitly with at(... = gen(...) )
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Discrete change with polynomials

1. With x and x2 only values on the blue curve are mathematically possible

x
0 1 2 3 4 5

x2

0

4

8

12

16

20
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Discrete change with polynomials
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2. Changes in the probability reflect linked changes in x and x2
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Tool: factor notation for polynomials

Without factor notation

1. Create the squared term

generate agesq = age * age

2. Then fit

logit diabetes c.age c.agesq ...

With factor notation

1. Fit the model

logit diabetes c.age##c.age ...

2. c.age##c.age automatically

2.1 Adds c.age to the model

2.2 Creates c.age#c.age ≡ age*age ≡ agesq

2.3 Adds c.age#c.age to the model

3. When c.age changes, margins automatically changes c.age#c.age
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Discrete change with age & age2

Correct ADC(age) with factor notation

1. age and age#age automatically change together

. logit diabetes c.age##c.age c.bmi i.white i.female i.hsdegree, or
(output omitted )

. mtable, at(age = gen(age)) at(age = gen(age+10)) post

Expression: Pr(diabetes), predict()

Pr(y)

1 0.205
2 0.223

. mlincom 2 - 1

lincom pvalue ll ul

1 0.018 0.000 0.011 0.024

2. Interpretation

On average, a ten-year increase in age increases the probability of
diabetes by .02 (p < .001).
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Discrete change with age & age2

Same results without factor notation

1] . logit diabetes c.age c.agesq c.bmi i.white i.female i.hsdegree, or
(output omitted )

2 ] . mtable, post ///

3a] > at( age = gen( age) ///
3b] > agesq = gen( agesq) ) ///

4a] > at( age = gen( age+10) ///
4b] > agesq = gen((age+10)^2) )

(output omitted )

5] . mlincom 2 - 1

(output omitted )

Why use at(gen()) instead of factor syntax

1. at(gen()) does many things that factor syntax cannot do (gripe)
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Comparing ADCs across models with suest

1. Does the effect of a variable change with model specification?

2. Computing ADC(female) for two models

. qui logit diabetes c.bmi i.female i.white i.female c.age##c.age i.hsdegree

. estimate store Mbmi

. qui mtable, dydx(female) rowname(ADC(female) with Mbmi) clear

. qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree

. estimate store Mwt

. mtable, dydx(female) rowname(ADC(female) with Mwt) below

Expression: Pr(diabetes), predict()

d Pr(y)

ADC(female) with Mbmi -0.036
ADC(female) with Mwt -0.020

3. To test if they are equal, the effects must be estimated simultaneously
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Comparing effects across models: ADC(female)
Joint estimation with suest

4. The stored estimates are combined and stored

. suest Mbmi Mwt, noci

Simultaneous results for Mbmi, Mwt

Number of obs = 16,071

Robust
Coef. Std. Err. z P>|z|

Mbmi_diabetes
bmi .099441 .003747 26.54 0.000

white
White -.614014 .0480926 -12.77 0.000

:::

Mwt_diabetes
weight .0163568 .0005901 27.72 0.000
height -.0726272 .0078904 -9.20 0.000
white

White -.6324228 .0481997 -13.12 0.000
:::

. qui estimates store Msuest
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Tool: equation, predict, and expression

1. The two stored models are equations in the suest model

Mbmi becomes equation(diabetes Mbmi)

Mwt becomes equation(diabetes Mwt)

2. With logit, margins by default computes the “expression” for
predicted probabilities

Expression : Pr(diabetes), predict()

3. With suest, margins only computes x′β

Expression : Linear prediction, predict()

4. Sadly, margins, predict(pr) does not work with suest

5. The solution is the expression() option
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Tool: equation, predict, and expression

6. With suest, margins computes x′β̂, but we need π̂(x) = Λ(x′β̂)

7. Option predict(equation(Mbmi diabetes) computes x′β̂ for Mbmi

8. The logistic CDF function logistic() transforms x′β̂ to π̂(x)

9. The expression for π̂(x) is

expression(logistic(predict(equation(Mbmi diabetes))

10. To make code easier, save expressions for Mbmi and Mwt in locals

local EXPR Mbmi logistic(predict(equation(Mbmi diabetes)))

local EXPR Mwt logistic(predict(equation(Mwt diabetes)))

11. The rest is “easy”
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Comparing ADCs across models: ADC(female)
ADC with suest

1. For model Mbmi, ADC(female) is

. mtable, expression(`EXPR_Mbmi´) at(female=1) at(female=0) post

Expression: , logistic(predict(equation(Mbmi_diabetes)))

female Margin

1 1 0.189
2 0 0.225

. qui mlincom 1 - 2, rowname(ADC Mbmi) clear

2. For model Mwt

. qui mtable, expression(`EXPR_Mwt´) at(female=1) at(female=0) post

. mlincom 1 - 2, rowname(ADC Mwt) add

lincom pvalue ll ul

ADC Mbmi -0.036 0.000 -0.048 -0.024
ADC Mwt -0.020 0.026 -0.037 -0.002

3. The estimates match those from margins after the individual models;
standard errors are robust
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Comparing ADCs across models: ADC(female)
Second differences with suest

1. The ADCs from the two models are

ADCMbmi = π̂Mbmi(female = 1, x) − π̂Mbmi(female = 0, x)

ADCMwt = π̂Mwt(female = 1, x) − π̂Mwt(female = 0, x)

2. Since margins can’t compute these in one step, we compute the parts

π̂Mbmi(female = 0, x) − π̂Mwt(female = 0, x)

π̂Mbmi(female = 1, x) − π̂Mwt(female = 1, x)

3. Subtracting these is the second difference we want to test

ADCMbmi−ADCMwt = [π̂Mbmi(female = 1, x)−π̂Mbmi(female = 0, x)]

− [π̂Mwt(female = 1, x) − π̂Mwt(female = 0, x)]

4. The results from margins follow
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Comparing ADCs across models: ADC(female)
Second differences with suest

5. Using the locals defined earlier

. mtable, expression(`EXPR_Mbmi´-`EXPR_Mwt´) ///
> at(female=1) at(female=0) post brief

Expression: , logistic(predict(equation(Mbmi_diabetes)))
-logistic(predict(equation(Mwt_diabetes)))

female Margin

1 1 -0.007
2 0 0.009

6. The 2nd difference is

. mlincom 1 - 2, title(Ho: ADC female equal for Mwt & Mbmi)

Ho: ADC female equal for m_wt & m_bmi

lincom pvalue ll ul

1 -0.016 0.012 -0.029 -0.004

7. Interpretation

The effect of being female is significantly larger when body mass is
measured with BMI than with weight and height (p < .02).
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Comparing effects across models: summary

1. Jointly fitting models and computing effects with margins is a general
approach for comparing effects across models (Mize et al., 2009)

2. gsem

2.1 Fits generalized linear models only

2.2 margins is slow (grumble, grumble), but easy to use

3. suest

3.1 Fits a much wider class of models

3.2 margins is fast, but hard to use (grumble, grumble)

4. suest and gsem produce identical results
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Comparing groups

Linear regression

1. Coefficients differ by group such as βW
female and βN

female

2. Chow tests are used to test H0:β
N
female = βW

female

Logit and probit

1. Coefficients differ by group such as βW
female and βN

female

2. The estimates combines

2.1 The effect of xk which can differ by group

2.2 The variance of the error which can differ by group

3. Regression coefficients are identified to a scale factor, so standard tests
of H0:β

N
k = βW

k are invalid (Allison, 1999)

4. Probabilities and marginal effects are identified (Long, 2009)

74 / 92

Comparing groups: outcomes and effects

Group differences can be examined two ways

1. Differences in probabilities

H0: πW (x = x∗) = πN(x = x∗)

Is the probability of diabetes the same for white and non-white
respondents who have the same characteristics?

2. Differences in marginal effects

H0:
ΔπW

Δxk
=

ΔπN

Δxk

Is the effect of xk the same for whites and non-whites?

3. These dimensions of difference are shown in the next graph
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Comparing groups: outcomes and effects
Hypothetical data
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Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by white

logit diabetes ibn.white ///
ibn.white#(i.female i.hsdegree c.age##c.age c.bmi), nocon

2. This is equivalent to simultaneously estimating

logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==1

logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==0

3. Resulting in these estimates

Variable Whites NonWhites

female
Women 0.713 1.024 <== odds ratios

0.000 0.755 <== p-values
hsdegree

HS degree 0.706 0.743
0.000 0.000

age 1.278 1.369
0.000 0.000

::: ::::: :::::

77 / 92

Group differences in probabilities by age

1. Compute DC(white) at different ages

. mtable, dydx(white) at(age=(55(10)85)) atmeans stats(est p)

Expression: Pr(diabetes), predict()

age d Pr(y) p

1 55 -0.078 0.000 <== DCR(white | age=55)
2 65 -0.124 0.000 <== DCR(white | age=65)
3 75 -0.129 0.000 <== DCR(white | age=75)
4 85 -0.092 0.000 <== DCR(white | age=85)

Specified values of covariates

0. 1. 1. 1.
white white female hsdegree bmi

Current .228 .772 .568 .762 27.9

2. Example of interpretation

For average respondents who are 55, the probability of diabetes is
significantly larger for non-whites than whites (p<.01).

3. Graphically we can show effects at multiple ages
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Group differences in probabilities by age

A: Probabilities B: DCR(race)
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Note: these plots can be computed with mgen or marginsplot
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Group differences in effects
Hypothetical data

1. ADC reflects coefficients and the distribution of predictors

2. DCR is the effect at specific values
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Group differences in effects: summary

Comparing ADCs

1. Group differences in ADCs are determined by two things

1.1 Group differences in the probability curves

1.2 Group differences in distribution of variables

Comparing DCRs

1. Group differences in DCRs are determined by two things

1.1 Group differences in the probability curves

1.2 The specific location where they are evaluated

2. They do not depend on group differences in the distribution of variables

Which to use?

1. The answer depends on what you want to know?
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Group differences in ADC(bmi+5)

1. To compute ADC(bmi+5) by race

. mtable, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi+5)) post

Expression: Pr(diabetes), predict()

Pr(y)

0.white#c.1 0.310
1.white#c.1 0.174
0.white#c.2 0.391
1.white#c.2 0.257

. qui mlincom 3-1, rowname(ADC(bmi) non) stats(est p) clear

. qui mlincom 4-2, rowname(ADC(bmi) wht) stats(est p) add

. mlincom (4-2) - (3-1), rowname(Difference) stats(est p) add

lincom pvalue

ADC(bmi) non 0.082 0.000
ADC(bmi) wht 0.083 0.000

Difference 0.002 0.826

2. Conclusion

The average effects of BMI are not significantly different for whites and
non-whites (p=.83).
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Group differences in DCR(age+10)

1. ADC(age) might not be useful due to nonlinearity

2. We compare DCR(age+10) at different ages

2.1 Other variables are held at sample means

2.2 Group specific means could be used (Long and Freese, 2014)

3. For example, DCR(age+10) at 55

mtable, atmeans post ///
at(age=55 white=0) at(age=55 white=1) ///
at(age=65 white=0) at(age=65 white=1)

mlincom 3-1, rowname(DC nonwhite) stats(est p) clear
mlincom 4-2, rowname(DC white) stats(est p) add
mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add

4. And so on, with the following results
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Group differences in DCR(age+10)

5. DCRs show group differences in effect of age at different ages

lincom pvalue

55: DC non 0.110 0.000
DC white 0.064 0.000

Difference -0.046 0.001

70: DC non 0.001 0.940
DC white 0.018 0.001

Difference 0.017 0.180

85: DC non -0.109 0.000
DC white -0.049 0.000

Difference 0.060 0.003 0
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6. The differences in DCRs do not depend on group differences in the
distribution of age or other variables
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DCM for continuous xk : DCM(bmi+ sd)
Discrete change at the mean

1. Let bmi increase from mean(bmi) to mean(bmi)+ sd(bmi)

. qui sum bmi

. local mn = r(mean)

. local mnplus = r(mean) + r(sd)

2. Option atmeans holds other variables at their means

. margins, atmeans at(bmi = `mn´) at(bmi = `mnplus´) post

Expression : Pr(diabetes), predict()

1._at : bmi = 27.89787
0.white = .2284239 (mean)
1.white = .7715761 (mean)
age = 69.29276 (mean)
0.female = .4315226 (mean)
1.female = .5684774 (mean)
0.hsdegree = .2375086 (mean)
1.hsdegree = .7624914 (mean)

<continued>
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DCM for continuous xk : DCM(bmi+ sd)

2._at : bmi = 33.6687
0.white = .2284239 (mean)
1.white = .7715761 (mean)
age = 69.29276 (mean)
0.female = .4315226 (mean)
1.female = .5684774 (mean)
0.hsdegree = .2375086 (mean)
1.hsdegree = .7624914 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2097641 .0045531 46.07 0.000 .2008401 .2186881
2 .3202789 .0066246 48.35 0.000 .307295 .3332628

3. For complex models the output gets very long, so mtable was written.
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Tool: mtable wrapper for margins

1. margins output is complete, not compact

2. mtable executes margins and simplifies the output (and more)

2.1 To see the margins commands being used, add option commands

2.2 To see margins and mtable output, add option details
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DCM for continuous xk : DCM(bmi+ sd)

2. mtable obtains identical results as margins

. mtable, atmeans at(bmi = `mn´) at(bmi = `mnplus´) post

Expression: Pr(diabetes), predict()

bmi Pr(y)

1 27.9 0.210
2 33.7 0.320

Specified values of covariates

1. 1. 1.
white age female hsdegree

Current .772 69.3 .568 .762

3. Computing DCM(bmi+ sd)

. mlincom 2 - 1

lincom pvalue ll ul

1 0.111 0.000 0.102 0.119

For someone who is average, increasing BMI by one standard deviation
increases the probability of diabetes by .111 (p < .001).
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Comparing DCRs

1. Is the effect of age significantly different at different ages?
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Comparing DCR(age) at different ages

2. Compute probabilities at four ages with other variables at means

. mtable, at(age=(60(10)90)) post atmeans

Expression: Pr(diabetes), predict()

age Pr(y)

1 60 0.150
2 70 0.213
3 80 0.227
4 90 0.183

Specified values of covariates

1. 1. 1.
bmi white female hsdegree

Current 27.9 .772 .568 .762

3. DCRs at different ages

. mlincom 2-1, clear rowname(DCR60)

. mlincom 3-2, add rowname(DCR70)

. mlincom 4-3, add rowname(DCR80)
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Comparing DCR(age) at different ages

4. Test differences in DCRs

. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)

. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)

. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)

5. Summarizing

. mlincom, twidth(14)

lincom pvalue ll ul

DCR60 0.063 0.000 0.054 0.073
DCR70 0.014 0.004 0.004 0.023
DCR80 -0.043 0.000 -0.061 -0.026

DCR60 - DCR70 0.049 0.000 0.037 0.062
DCR60 - DCR80 0.107 0.000 0.083 0.130
DCR70 - DCR80 0.057 0.000 0.046 0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages
60, 70, and 80 (p < .001).
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The end

No more examples!
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