Confidence Intervals for Predicted Outcomes in Regression
Models for Categorical Outcomes

Jun Xu and J. Scott Long
Indiana University

August 23, 2005

1 Overview

The interpretation of regression models often involves the examination of predicted outcomes
at specific values of the independent variables. The prvalue command by Long and Freese
(forthcoming) makes it very simple to compute such post-estimation predictions. After es-
timating a model, the user specifies values of interest for the independent variables and
prvalue computes the predicted value (or values) of the outcome. Changes in the predic-
tions as values of the independent variables change can also be computed. In this article,
we describe enhancements to prvalue that allow the computation of confidence intervals for
both predicted outcomes and discrete changes in predictions. Depending on the regression
model and options chosen, confidence intervals are computed using standard maximum likeli-
hood methods, the method of endpoint transformations, the delta method, or bootstrapping.
The command works after estimating models using cloglog, cnreg, intreg, logit, mlogit,
nbreg, ologit, oprobit, poisson, probit, regress, tobit, zinb, and zip. To complement
prvalue, we also present enhancements to prgen that allow you to plot confidence intervals
and marginal changes.

2 Predictions and Methods for Computing Confidence
Intervals

For a variety of regression models, prvalue computes predicted outcomes along with confi-
dence intervals for these predictions. For models with categorical outcomes, the probability
of each outcome is computed. For example, with the binary probit model the probability of

observing a one is estimated as T = P (x/ ,3), where x is a vector of independent variables

and B contain the estimated parameters. We can also estimate a confidence interval for 7.
For a given confidence level, the upper and lower bounds define the confidence interval. For
example, the 95% confidence interval for 7 includes upper and lower bounds such that

Pr <7TLB S ™ S 7TUB) =.95.

To understand what this means, imagine that we take repeated samples from our popula-
tion and that for each sample we estimate the upper and lower bounds of the confidence
interval for that probability. About 95% of these confidence intervals would contain the true
probability .

For count models, both the predicted rate and the probability of each count are com-
puted along with confidence intervals. For example, with the Poisson regression model

the expected rate is 1 = exp <XB> and we compute the confidence interval such that

Pr(upp < p < pyp) = .95.With count models, we also compute probabilities of specific
values of the outcome. For example, we might compute the probability Pr(y =2 | x) of
observing a count of two given the levels of the independent variables, with the confidence
interval such that

Pr[Pr(y =2)., < Priy=2]x) < Pr(y=2|x)y,] = .95

The values computed for each model are summarized here:!

Models Pr(y) wyory* Ratep Pr(count)
cloglog, logit, probit default ystar! no no
ologit, oprobit default ystar! no no
mlogit, default no no no
zinb, zip, nbreg, poisson no no default default
regress, cnreg, intreg, tobit no default no no

1: when the ystar option is specified.

We can also compute changes in the predicted outcome as levels of the x’s change. For
example, suppose that we have two sets of values for the independent variables, x4 and xp.
We could compute how the predicted outcome changes when the values of x change from x4
and xg. For example, for a binary model this would be

APr(y=1)

A Pt =1lxa)=Pr{y=1]|xp) ,

along with the confidence interval

APr(y=1) < APr(y=1) < APr(y=1)

Pr Ax LB Ax - Ax UB

=.95.

For further details, see Long and Freese (forthcoming).

prvalue uses four methods to compute confidence intervals: 1) maximum likelihood,
2) endpoint transformation, 3) the bootstrap method, and 4) the delta method. While
the technical details on each method for are given in Section 7, here we provide general
information about each method.

1. Maximum Likelihood For models such as the linear regression model, the standard
method of computing confidence intervals using maximum likelihood theory is used.

2. Endpoint Transformation For binary models, this method computes the upper
and lower bounds of the confidence intervals for the linear combination x’3 and then

'With Stata 9, prvalue can also compute predicted outcomes for the models estimated by mprobit,
slogit, ztp and ztnb. However, confidence intervals are not available for these commands.

transforms these bounds into the probability of observing a one. For example for
probit, the lower bound (x'3);; would be transformed into the lower bound for the
probability as Pr(y =1);5 = ®[(x'8);5]. One advantage of this method is that the
bounds cannot be smaller than 0 or greater than 1. This method cannot be used for
computing confidence intervals for changes in predictions.

3. Delta Method This method takes a function that is too complex for analytically
computing the variance (for example, the change in the predicted probabilities in a
multinomial logit model) and creates a linear approximation of that function. The
variance of the simpler approximation is used for constructing the confidence interval.
Since prvalue uses analytic formulas for the derivatives, rather than numerical estima-
tion, the computation of confidence intervals is extremely fast. Unlike the method of
endpoint transformation, the bounds computed by the delta method can include values
that exceed the range of the statistic being estimated (e.g., a bound for a predicted
probability could be negative or greater than one).

4. Bootstrap Method The idea of the bootstrap (see Guan 2003 for an introduction to
the bootstrap using Stata) is that by taking repeated samples from the sample used
to estimate your model, you can estimate the sampling variability that would occur
by taking repeated samples from the population. This is done by taking a random
sample from the estimation sample, computing the statistics of interest, and repeat-
ing this for some number of replications. The variation in the estimates across the
replications is used to estimate the standard deviation of the sampling distribution.
While the bootstrap method generally works quite well and avoids assumptions im-
plicit in other methods, it is computationally intensive. For example, computing the
confidence intervals for a multinomial logit with 5 outcomes, three variables, and 337
cases by the delta method took .15 seconds, while computing the confidence intervals
by bootstrap took 141 seconds using 1,000 replications. Computations of confidence
intervals for a multinomial logit with 6 outcomes, 4 variables and 7,357 cases using the
delta method took .61 seconds, while computing the confidence intervals by bootstrap
took 13 minutes 2 seconds for 1,000 replications.? Roughly speaking, each replication
in a bootstrap takes as long as the entire computation for the delta method. The zip
and zinb models are too complex for computing the derivatives necessary for the delta
method, so only the bootstrap method is available.

A summary of which methods work for which models is shown below:

2Computations were made using Stata/SE 8.2 (born 10 Jan 2005) on a Dell XPS with an Intel® Pentium®
4 running at 3.4GHz. Estimates of times for the delta method were based on the average of 1,000 computa-
tions.

Endpoint

Maximum Transfor- Delta Bootstrap Default
Models Likelihood (ML) mations Method Method Method
cloglog, logit, probit yes? yes? yes yes delta
ologit, oprobit yes! no yes yes delta
mlogit, nbreg, poisson no no yes yes delta
zinb, zip no no no yes no ci
regress, cnreg, ystar no no no ml

intreg, tobit

1: when the ystar option is specified; 2: this method does not work for changes in predictions.

We now discuss how to install prvalue and prgen, followed by a discussion of the syntax
and options for each command.

3 Installation

prvalue and prgen are part of the SPost package of programs for postestimation analy-
sis (see Long and Freese forthcoming and www.indiana.edu/~jslsoc/spost.htm for details).
Installation should be simple if you are connected to the Internet. If you have installed a
prior version of SPost, we suggest that you begin by uninstalling it. To do this, enter the
command ado. This will list all packages that have been installed, with each package marked
with a number in []’s. Scan the list and record the number of the package containing the
SPost ado files and any other packages related to SPost. While the ado files for Stata 9 are
contained in the package spost_ado9, other names were used in the past. Uninstall these
packages with the command ado uninstall [#], where # is the package number (note
that you must include the brackets, for example, ado uninstall [3]). You must run ado
uninstall once for each package to be uninstalled.

Next, type search spost, net to get a list of packages related to SPost. One of these
packages should be labeled spost_ado9 from http://www.indiana.edu/~jslsoc/stata.
This contains the commands for Stata 9 and later. The package for Stata 8 is labeled
spostado from http://www.indiana.edu/"jslsoc/stata. Click on the blue label for
your version of Stata and you will be given information on how to install the programs.
To install examples on using prvalue and prgen, click on the label
spostci from http://www.indiana.edu/"jslsoc/stata. These do and dta files will re-
produce the examples in this article and will include other examples of using these commands.

If you have do files that used commands from prior versions of SPost, they should continue
to work as before. The only exception is that now prvalue, ystar does not print predicted
probabilities. To compute the predicted probabilities, simply run the command without the
ystar option. The formatting of output has also changed to incorporate the confidence
intervals.

4 Syntax for prvalue

prvalue [if exp| [in range| [, x(variablel =valuel]...]) rest(stat) all save diff
maxcnt (#) brief nobase nolabel ystar level(#) [delta | ept | bootstrap |
reps(#) dots match size(#) gvi?g(...)][biﬁcorrected | percentile |
normal]

Options

x (variablel =valuel|...]) sets the values of independent variables for calculating predicted
outcomes. The list must alternate variable names and either numeric values or terms
describing the value to use. mean, median, min, and max are used to specify the mean,
median, minimum value or maximum value for a variable. upper sets a variables to
its minimum or maximum depending on which value yields the larger predicted value;
lower sets a variables to its minimum or maximum depending on which value yields the
smaller predicted value. If prvalue has already been run, previous will set variables
to their prior values. For example, x(wc=1 age=median) or x(wc=1 hc=previous
age=mean age=40).

rest (stat) sets the independent variables not specified by x() to their mean, min, max, or
median when calculating predicted values. grmean sets these independent variables to
the mean conditional on the variables and values specified in x(); grmedian, grmax,
and grmin work in the same way using values for the median, maximum or minimum.
If rest () is not specified, rest (mean) is assumed.

if exp and in range specify the sample used to compute the statistics (e.g., mean) used to
set the values with x() and rest().

all specifies that calculation of means, medians, and other statistics should use the entire
sample instead of the possibly smaller sample used to estimate the model.

save saves information from the current prvalue for use in computing changes in predic-
tions using the diff option.

diff computes difference between current predictions and those that were saved using
save. You must use the same method for computing confidence intervals with diff as
was used for the save results.

ystar requests that the predicted value of y* rather than predicted probabilities should be
computed for binary and ordinal models.

maxcnt (#) is the maximum count value for which the probability is computed in count
models. The default of 9 will list probabilities for values from 0 to 9.

brief prints only limited output showing predictions and confidence intervals, without
listing values of the independent variables.

nobase suppresses the listing of the base values that were specified with x() or rest ().

nolabel uses the numeric values of the outcome rather than value labels in the output.

Options for computing confidence intervals

level (#) specifies the confidence level, in percent, for confidence intervals. For example,
level(95) specifies that you want a 95% confidence interval.

One of the following options can be chosen to specify the method used to compute confidence
intervals:

ept computes confidence intervals for predicted probabilities for cloglog, logit and probit
by endpoint transformation. This method cannot be used for changes in predictions.

delta calculates confidence intervals by the delta method using analytic derivatives.

bootstrap computes confidence intervals using the bootstrap method. This method takes
roughly 1,000 times longer to compute than other methods.

Options used for bootstrapped confidence intervals

reps(#) specifies the number of bootstrap replications to be performed. The default
is 1,000. The accuracy of a bootstrap estimate depends critically on the number of
replications. While sources differ on the recommended number of replications, Efron
and Tibshirani (1993:188) suggest 1,000 replications for confidence intervals. You can
use bssize (Poi 2004) to calculate the number of bootstrap replications to be used. In
our experience, this method suggests over 1,000 replications. See the documentation
for saving below.

dots is used with bootstrap to write a . at the beginning of each replication and periodi-
cally prints the percent of total replications that has been completed. If computations
appears to be stuck (i.e., new dots do not appear), it is likely that the estimation is not
converging for the current bootstrap sample. We have found this to be most common
with zip and zinb. When this happens, you can click on the break symbol to stop
computations for the current sample or wait until the maximum number of iterations
have been computed (by default, the maximum number of iterations is 16,000). When
a model does not converge for a given bootstrap sample, that sample is dropped.

match specifies that the bootstrap will resample within each category of the dependent
variable in proportion to the distribution of the outcome categories in the estimation
sample. If match is not specified, the proportions in each category of the bootstrap
sample are determined entirely by the random draw and it is possible to have samples
with no cases in some of the categories. This option does not apply to cnreg, intreg,
nbreg, poisson, regress, tobit, zinb, and zip.

size(#) specifies the number of cases to be sampled when bootstrapping. The default
is the size of the estimation sample. If size(#) is specified, # must be less than or
equal to the size of the estimation sample. In general, it is best to not specify size
(see www.stata.com/support /fags/stat /reps.html for further information).

saving(filename, save options) creates a data file with the estimates from each of the
bootstrapped samples with one case for each replication. This option is useful when
you need to examine the distribution of bootstrapped estimates. For example, this

option is required if you plan to use bssize to calculate the number of replications to
be used (Poi 2004).

One of the following can be chosen if you are computing bootstrapped confidence intervals:

percentile computes the bootstrapped confidence interval using the percentile method.
This is the default method.

biascorrected computes the bootstrapped confidence interval using the bias-corrected
method.

normal computes the bootstrapped confidence interval using the normal approximation
method.

5 Syntax for prgen

prgen varname [if exp] [in range], generate(prefir) [from(#) to(#) ncases(#)
gap(#) x(variablel=valuel [...]) rest(stat) maxcnt(#) brief all noisily
marginal ci]| options from prvalue]

All options from prvalue, except for save and diff, can be used to specify how the upper
and lower bounds are created when the ci option is used. The options if, in, x(), rest (),
maxcnt, brief and all work in the same way as for prvalue.

Options

varname is the name of the variable that changes while all other variables are held at
specified values.

generate (prefiz) sets the prefix for the new variables created by prgen. Choosing a prefix
that is different than the beginning letters of any of the variables in your data set
makes it easier to examine the results. For example, if you choose the prefix abcd then
you can use the command sum abcd* to examine all newly created variables.

from(#) and to(#) are the start and end values for varname. The default is for varname
to range from the observed minimum to the observed maximum of varname.

ncases (#) specifies the number of predicted values prgen computes as varname varies
from the start value to the end value. The default is 11.

gap(#) is an alternative to ncases. You specify the gap or size between tic marks and
prgen determines if the specified value divides evenly into the range specified with
from and to. If it does, prgen determines the appropriate value for ncases.

ci indicates that you want to generate confidence intervals corresponding to the predictions
that are created.

marginal requests that a variable or variables are created containing the marginal change
in the outcome relative to varname, holding all other variables constant.

noisily indicates that you want to see the output from prvalue that was used to generate
the predicted values.

Variables generated The following table indicates the variables that are created by
prgen. The observations contain predicted values or probabilities for a range of values
for the variable varname, holding the other variables at the specified values. n observations
are created, where n is 11 by default or can be specified by ncases(or gap(). The new
variable names start with the prefiz specified by gen(). The variables created are:

For which models Name Content
All models prefirx Values of varname.
logit, probit prefirp0 Predicted probability Pr(y = 0).
prefitpl Predicted probability Pr(y = 1).
ologit, oprobit prefitpk Predicted probability Pr(y = k) for all outcomes.
prefixsk Cumulative probability Pr(y < k) for all outcomes.
mlogit prefixpk Predicted probability Pr(y = k) for all outcomes.
poisson, nbreg, zip, zinb prefizmu Predicted rate p.

prefitpk Predicted probability Pr(y = k), for 0 < k < maxcnt ().

prefizsk Cumulative probability Pr(y < k), for 0 < k < maxcnt ().
zip, zinb prefizinf Predicted probability Pr(Always 0= 1) = Pr (inflate) .
regress, tobit, cnreg, intreg prefirzxb Predicted value x,@.

If ci is specified as an option for prgen, variables are created containing the upper and
lower bounds for the confidence interval for the outcome. These variables have the same
names as those in the table above, except for adding ub at the end for the variable with
the upper bound and 1b for the lower bound. If marginal is specified, variables are created
that contain the marginal change in the outcome with respect to varname, holding all other
variables constant. The variables containing marginals have the same names as those in the
table above, except for adding a D prior to the outcome abbreviation and Dvarname after.
For example, the marginal for prefirp0O is named prefixDpODvarname. Marginals are only
computed for those models for which the prchange command can compute the marginal
change (see Long and Freese forthcoming).

6 Examples

The examples that follow illustrate increasingly complex ways in which prvalue can be used.
In addition to these examples, other examples are downloaded when you install the spostci
package. For further details on the data and models, see either Long (1997) or Long and
Freese (forthcoming).

6.1 Simple predictions

The commands generating the output in this section are in prvalue_predict.do in the
spostci package.

Binary logit In this example, we use a binary logit model to predict labor force participa-
tion for a sample of women. The independent variables are the number of children less than
six, the number of children from six to 18, the wife’s age, whether the wife went to college,
whether the husband went to college, the log of the wife’s estimated wages, and the family
income excluding wife’s income.

. use binlfp2, clear
. logit 1fp kb5 k618 age wc hc lwg inc, nolog

(output omitted)

After the model is estimated, we compute the predicted probability of labor force partici-
pation for a woman who is 35 years old (age=35), has two young children (k5=2), did not
attend college (wc=0), and is average on all other characteristics (rest (mean)):

. prvalue, x(age=35 k5=2 wc=0) rest(mean)
logit: Predictions for 1lfp
Confidence intervals by delta method

95% Conf. Interval

Pr(y=inLF|x): 0.1174 [0.0495, 0.1852]
Pr(y=NotInLF|x): 0.8826 [0.8148, 0.9505]
kb5 k618 age we hc lwg
X= 2 1.3532537 35 0 .39176627 1.0971148 20.128

For someone with these characteristics (which are listed in the line beginning x=), the pre-
dicted probability of being in the labor force is .117, with a 95% confidence interval from
.050 to .185.

With binary and ordinal models, we can also predict the latent y* used in the latent
variable formulation of the model. To do this, we add the option ystar:

. prvalue , x(age=35 k5=2 wc=0) rest(mean) ystar
logit: Predictions for 1lfp

95% Conf. Interval

Predicted y*: -2.0177 [-2.6723, -1.3631]
k5 k618 age wC hc lwg
X= 2 1.3532537 35 0 .39176627 1.0971148 20.128

inc
965

inc
965

Negative binomial regression In this example, we examine a count model predicting the
number of papers published by biochemists. Independent variables are whether the scientist
is a woman, whether the scientist is married, the number of young children in the scientist’s
family, the prestige of scientist’s Ph.D. department and the number of articles published by
the scientist’s mentor.

. use couart2, clear
. nbreg art fem mar kid5 phd ment, nolog

(output omitted)

Since very few scientists publish more than six papers, we use the option maxcnt(6) so
that prvalue will only compute predicted probabilities for publications from 0 to 6. For a
single (mar=0) woman (fem=0) without young children (kid5=0) who is average on all other
characteristics, we find:

. prvalue , x(mar=0 fem=1 kid5=0) rest(mean) maxcnt(6)
nbreg: Predictions for art
Confidence intervals by delta method

95% Conf. Interval

Rate: 1.4079 [1.2237, 1.5921]
Pr(y=0|x): 0.3346 [0.2966, 0.3726]
Pr(y=1|x): 0.2905 [0.2809, 0.3000]
Pr(y=2|x): 0.1818 [0.1731, 0.1904]
Pr(y=3|x): 0.0991 [0.0863, 0.1118]
Pr(y=4|x): 0.0500 [0.0395, 0.0604]
Pr(y=5|x): 0.0240 [0.0170, 0.0310]
Pr(y=6|x): 0.0111 [0.0070, 0.0153]

fem mar kidb phd ment

x= 1 0 0 3.1031093 8.7672131

We predict 1.41 publications, with a confidence interval from 1.22 to 1.59. Below the rate,
the probabilities that a person with these characteristics will publish a given number of
papers are listed along with confidence intervals computed with the delta method.

Predictions at observed values prvalue is designed to compute predictions at values
specified by the user (e.g., x(k5=0)) or at values corresponding to summary statistics in
the sample (e.g., rest(mean)). If you want to compute predictions along with confidence
intervals at observed values for a given observation, you need to explicitly indicate those
values. For example, the first observation in the data used with nbreg is:

. list in 1

10

To compute the predicted outcomes at these values, we can use the command:

. prvalue, x(fem=0 mar=1 kid5=0 phd=2.52 ment=7)
nbreg: Predictions for art

Confidence intervals by delta method

95% Conf. Interval

Rate: 1.913 [1.6587, 2.1673]
Pr(y=0[x): 0.2499 [0.2155, 0.2843]
Pr(y=1lx): 0.2591 [0.2421, 0.2762]
Pr(y=21x): 0.1937 [0.1925, 0.1949]
Pr(y=3Ix): 0.1261 [0.1162, 0.1360]
Pr(y=41x): 0.0760 [0.06486, 0.0874]
Pr(y=5|x): 0.0436 [0.0339, 0.0533]
Pr(y=61x): 0.0242 [0.0171, 0.0313]
Pr(y=71x): 0.0131 [0.0083, 0.0179]
Pr(y=81x): 0.0069 [0.0039, 0.0100]
Pr(y=91x): 0.0036 [0.0018, 0.0055]

fem mar kid5 phd ment
x= 0 1 0 2.52 7

Using a bit of simple Stata programming, it is possible to automate this process to compute
predictions for all observations. This is shown in the sample do file pravlue_observed.do
that is installed as part of the spostci package.

6.2 Discrete change

The commands generating the output in this section are in prvalue_change.do in the
spostci package.

Binary probit One way to interpret the results of regression type models is to see how
the predictions change when levels of the independent variables change. To illustrate this,
we examine how the probability of being in the labor force is expected to increase when a
woman has gone to college. We begin by estimating a probit model:

. use binlfp2, clear
. probit 1fp kb k618 age wc hc lwg inc, nolog

11

(output omitted)

The next command predicts the probability for someone who is average on all characteristics
and who has not gone to college (wc=0). Notice that this command is prefixed by quietly
since we do not want to see the results yet. But, we save the results with the save option.

. quietly prvalue, x(wc=0) rest(mean) save

We run prvalue again, this time for someone who attended college (wc=1). We use the diff
option to compute changes in predictions from the saved results:

. prvalue, x(wc=1) rest(mean) diff
probit: Change in Predictions for 1lfp

Confidence intervals by delta method

Current Saved Change 95% CI for Change

Pr(y=inLF|x): 0.7082 0.5238 0.1844 [0.0892, 0.2795]

Pr(y=NotInLF|x): 0.2918 0.4762 -0.1844 [-0.2795, -0.0892]
kb5 k618 age wC hc lwg
Current= .2377158 1.35325637 42.537849 1 .39176627 1.0971148
Saved= .2377158 1.35632637 42.537849 0 .39176627 1.0971148
Diff= 0 0 0 1 0 0

inc

Current= 20.128965
Saved= 20.128965
Diff= 0

For someone who is average on all other variables, attending college increases the probability
of being in the labor force by .18 with a 95% confidence interval from .09 to .28.

Poisson regression Our next example computes the change in the rate of publication
when two variables change at the same time. We also illustrate the computation of boot-
strapped confidence intervals.

. use couart2, clear
. poisson art fem mar kid5 phd ment, nolog

(output omitted)

We want to compare the predicted productivity for an unmarried woman without children
to the productivity for a married, female scientist with two young children:

. quietly prvalue , x(mar=0 fem=1 kid5=0) maxcnt(5) boot save

12

. prvalue , x(mar=1 fem=1 kid5=2) maxcnt(5) boot diff
poisson: Change in Predictions for art

Bootstrapped confidence intervals using percentile method
(1000 of 1000 replications completed)

Current Saved Change 957 CI for Change
Rate: 1.138 1.4102 -.27228 [-0.5110, -0.0300]
Pr(y=01x): 0.3205 0.2441 0.0764 [0.0080, 0.1535]
Pr(y=1|x): 0.3647 0.3442 0.0205 [0.0022, 0.0384]
Pr(y=2|x): 0.2075 0.2427 -0.0352 [-0.0728, -0.0034]
Pr(y=3|x): 0.0787 0.1141 -0.0354 [-0.0652, -0.0039]
Pr(y=4|x): 0.0224 0.0402 -0.0178 [-0.0327, -0.0020]
Pr(y=5I|x): 0.0051 0.0113 -0.0062 [-0.0121, -0.0007]
fem mar kidb phd ment
Current= 1 1 2 3.1031093 8.7672131
Saved= 1 0 0 3.1031093 8.7672131
Diff= 0 1 2 0 0

By default, 1,000 replications are computed, all of which completed successfully as indicated
by the count of the number of replications completed.

6.3 Plotting confidence intervals

The commands generating the output in this section are in prgen_plotpred.do in the
spostci package.

Predicted probabilities with logit prgen makes it simple to plot predictions and confi-
dence bands for those predictions as one variable changes, holding all other variables constant.
First, we estimate a binary logit model:

. use binlfp2, clear
. logit 1fp kb k618 age wc hc lwg inc, nolog

(output omitted)

We want to plot the predicted probability of being in the labor force for average women at
various ages. The resulting plot looks like this:

13

Probability of Being in Labor Force

Predicted probability
——— 95% upper limit
——— 95% lower limit

20 30 40

50 60 70

Age

As would be expected, the probability of being in the labor force decreases with age and the
confidence interval narrows at the center of our data. To create this graph, we use prgen
to compute predictions at many different values of age and to store the predictions. The
command that follows includes several options governing the confidence interval. First, ci
tells prgen that you want to save values for plotting the confidence interval. The ept option
indicates that the confidence interval should be computed using endpoint transformations,
rather than the default which is the delta method. Finally, noisily indicates that you want
to see the results of prvalue each time it is used to compute a prediction and its confidence
interval; in practice, you would only use noisily if you were having problems getting the
results to converge. Using prgen, we now compute predictions as age ranges from 20 to 70

in steps of five years:

. prgen age, from(20) to(70) gap(5) gen(prlfp) ci ept noisily

Results from prvalue called by prgen

logit: Predictions for 1fp

Pr(y=inLF|x): 0.8495
Pr(y=NotInLF|x): 0.1505
k5 k618
x= .2377168 1.3532537

95% Conf. Interval

[0.7565, 0.9111]
[0.0889, 0.2435]
age wC hc lwg inc

20 .2815405 .39176627 1.0971148 20.128965

14

(output omitted)
logit: Predicted values as age varies from 20 to 70.

k5 k618 age wC hc lwg inc
x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 20.128965

The variables that are created all begin with the prefix prlfp:

. desc prlfpx

storage display value
variable name type format label variable label
prlfpx float %9.0g Changing value of age
prlfpp0 float %9.0g pr (NotInLF)=Pr (0)
prlfppl float %9.0g pr (inLF)=Pr (1)
prlfppOub float 7%9.0g UB pr (NotInLF)=Pr(0)
prlfpplub float %9.0g UB pr(inLF)=Pr(1)
prlfppOlb float %9.0g LB pr (NotInLF)=Pr(0)
prlfppilb float %9.0g LB pr(inLF)=Pr(1)

prlfpx contains values of age between 20 and 70. prlfpp1l is the probability of being in
the labor force, while prlfpplub and prlfpp1lb hold the upper and lower bounds. We can
plot these with the following commands, which generated the graph above. First, we create
variable labels that are used to label the plot:

. label var prlfppl "Predicted probability"
. label var prlfpplub "95% upper limit"

. label var prlfppllb "95% lower limit"

. label var prlfpx "Age"

Next, we use twoway to plot the results:

. twoway ///

> (connected prlfppl prlfpx, clcolor(black) clpat(solid) ///
> clwidth(medthick) msymbol(i) mcolor (none)) /17
> (connected prlfpplub prlfpx, msymbol(i) mcolor(none) ///
> clcolor(black) clpat(dash) clwidth(thin)) /17
> (connected prlfppllb prlfpx, msymbol(i) mcolor(none) ///
> clcolor(black) clpat(dash) clwidth(thin)), ///
> ytitle("Probability of Being in Labor Force") /17
> yscale(range(0 .35)) ylabel(, grid glwidth(medium) /17
> glpattern(dot)) xscale(range(20 70)) xlabel(20(10)70)

15

6.4 Effects of the number of replications

The number of replications is important for the quality of the bootstrapped confidence
interval. To illustrate this, we consider our earlier example of labor force participation:

use binlfp2, clear
logit 1fp kb k618 age wc hc lwg inc, nolog

For this model, we compute the 95% confidence interval using the bootstrap method with
the number of replications varying from 50 to 3,000. This leads to the following graph,
which shows that the upper and lower bounds from the bootstrap vary substantially when
the number of replications is less than 1,000 (especially for the upper bounds), but stabilize

after 1,000.

25+ /R o -0-
. . —e-o-B-__
p \\d, 843&‘13_43—‘9——5/& 0

=1)
=
T

Pr(Ifp
IR
1

o
()]
1

P ePe020000-0-0-0-0-06-06--60--0-----0

o
1

————————————————————————— --©-- Bootstrap: Lower bound

054 --&-- Bootstrap: Upper bound

[[[[[[
0 500 1000 1500 2000 2500 3000
Number of Replications

Here is how the graph was generated. First, we compute the predicted probability of
being in the labor force with inc set to 100 and other variables held at the mean, with the
95% confidence interval computed by the delta method:

prvalue, x(inc=100) rest(mean) delta
local PrLFP = pepred[2,2]

local UpperDelta = peupper[2,2]
local LowerDelta = pelower[2,2]

The values of predicted probability along with the upper and lower bounds are saved to the
local variables PrLFP, UpperDelta and LowerDelta that are used to plot the sold line for the
predicted probability at 0.080 and the dashed lines for the lower and upper bounds at -0.015
and 0.176 in the graph above). Next, we we create variables that will hold the values for

16

the number of bootstrap replications used and the bounds computed using a given number
of replications. These variables are plotted to create our graph:

gen reps = .
label var reps "# of replications"
gen ubboot = .
label var ubboot "Bootstrap: Upper bound"
gen lbboot = .

label var lbboot "Bootstrap: Lower bound"

Before computing the first bootstrapped confidence interval, we set the random number seed
so that we can reproduce our results later (without this, a new sequence of random numbers
are generated each time we run the program). We then loop through values for the number of
replications ranging from 50 to 3000. Within the loop, we compute bootstrapped confidence
intervals and save the values into the variables we created above:

set seed 2399194

local j =0

foreach reps in 50 100 200 300 400 500 600 700 800 900 1000 ///
1200 1400 1600 1800 2000 2200 2400 2600 3000 {

local ++j
qui replace reps = ‘reps’ if _n==‘j’
di "= Start for ‘reps’ replications: " c(current_time)

di "= Seed: " c(seed)

prvalue , x(inc=100) rest(mean) boot rep(‘reps’)
scalar UpperBoot = peupper[2,2]

qui replace ubboot = UpperBoot if _n==‘j’

scalar LowerBoot = pelower[2,2]

qui replace lbboot = LowerBoot if _n==‘j’

di

di "= End for ‘reps’ replications:
di

" c(current_time)

3

The results were then plotted. Consistent with the recommendations given above, we see
that the bounds begin to stabilize at around 1,000 replications, which is our default. The
commands generating the output in this section are in prvalue_boot_reps.do.

7 Methods for Computing Confidence Intervals

In this section we provide a more technical discussion of the ideas behind the methods
used by prvalue to compute confidence intervals. Let o be some parameter estimated by
your model (e.g., Pr(y = 1) in the logit model). We are interested in computing the lower
and upper bounds such that Pr(LB <6 < UB) = « .This can be interpreted as saying
that the population parameter ¢ is contained within the interval with confidence 1 — a.
In the simplest case, the confidence interval can be computed directly using results from

17

maximum likelihood theory. Under the usual conditions for ML, B ~ N (B, Var >
Then, Xf‘i ~ N (X’ B,x' Var <[A§> x), which can be used to compute confidence intervals

for linear combinations x3, such as ¥y in linear regression. For example, to compute the
100 (1 — «) confidence interval, define z as the (1 — %) percentile from a standard normal
distribution (i.e., the probability of being greater than z is «r/2 and the probability of being

less than —z is «/2). Since XB is asymptotically normal with variance x’' Var (B) X, the

100 (1 — «) confidence interval for x'3 is

<xf3 — 2y [x! Var (B) x) <x'B< <xf3 + 2y /% Var (B) x> . (1)

Since many of the quantities computed by prvalue are nonlinear transformations of x'3,
other methods are required.

7.1 Endpoint Transformations

The method of endpoint transformation can compute confidence intervals for monotonic
functions of x'3 (i.e., a function that is always increasing or always decreasing), such as
the predicted probabilities in binary logit or probit. First, the confidence interval for X,CA'i
is computed as the symmetric interval [LByxg < x'3 < UByg|. Since Pr(x'8) = F (x'3)
is a monotonic transformation of x’3, the confidence interval for F' (x'3) is computed by
transforming the bounds using the same function F:

[Pr(x'8);5 <Pr(x'8) <Pr (X,IB)UB] = [F(X'Blp) < F(B) < F([X,/B]UB)] .

For example, consider the binary logit model. Using equation 1, we compute the 100 (1 — «)
confidence interval for x3. To compute the predicted probability, we take the logit transfor-
mation of x3:

o (<7)
1+ exp (x,@)

where A (.) is the cdf for the logistic distribution. By applying the logit transformation to
the endpoints from equation 1, we obtain the asymmetric confidence interval for Pr (x'3):

A (XB—ZHX/VCLT’ (B) x) <Pr(x¥g) <A (XB—FZQ/X’VCLT (B) X) .

While computationally simple, this method is limited to those few cases in which the outcome
of interest is a monotonic function of x’3. For further discussion, see Cox and Ma (1995)
and Liao (2000).

re(s8) - 0L o).

18

7.2 Delta Method

The delta method is a more general method for computing confidence intervals. This
method takes a function that is too complex for analytically computing the variance (e.g.,

~ \1-1
Var (exp <Xﬁ> [1 + exp (X,B)]), creates a linear approximation of the function, and

then computes the variance of the simpler linear function that is used for large sample
inference. While we illustrate this approach with a simple, one-parameter example, the
approach generalizes readily to the case with multiple parameters. Details on the equa-
tions used to implement the delta method for the models in prvalue are available at
www.indiana.edu\ ~jslsoc\stata\spostci\spost _deltaci.pdf.

Let F'(z/3) be the estimator of interest, for example, F' (x3) = Pr(xf) = ® (z/3) where
® is the cumulative density function for the standard, normal distribution. The first step is
to use a Taylor expansion to linearize the function evaluated at 3:

F (IB) ~ F (28) + (B — B)f(«B) ,

where f () = F'(P) is the derivative of F' evaluated at . Then, we take the variance of
both sides of the equation:

Var |F (aB)| = Var |[F (@) + (B - 8)f(@B)] .
We can easily simplify the right-hand side:

Var [F (@) + (B = 8)f(28)] = Var [F@B)] + Var | (B — B)f(x)]
+2C0v [F(ap), (B - B)f(x8)]
=0+ Var [(3— 9)f(@B)] +0
= (£ (B) Var (B~ 5)
= [£(B) Var (B) .

where we use the fact that 3, f (zf3), and F (z3) are constants.
To make our example concrete, consider binary probit where Pr (xﬁ) = (xﬁ) and x
is any specific value. The linear expansion is:

P (xB) ~ O (zf) + (3— 5) 8(1)8(;5) : (2)
where 00 (25)
o5 "¢ (Bz) .
Then,

Var [0 (@8) + (B - 8) ¢ (@8)] = [w6 (50)” Var (B) .

19

which leads to the symmetric confidence interval

pe (1) = =y ()] i (3)| < peco < s (53) 2o ()] e 3)]

Unlike the asymmetric confidence interval based on end-point transformations, this confi-
dence interval could include values less than 0 or greater than 1.

Next, consider a discrete change Pr (ma3> — Pr (mbg) =0 (ma5>) (mbg), where z,
and x; are two values of . The linearization is

{(I) (xaﬂ) - (xbﬁ)]
a8 '

~ ~ ~ 0
@ () — @ (,8) ~ [(B2a) = ® (B2)] + (5 - 5)
Taking the variance of the right-hand-side and simplifying:

I[P (z.f) — @ (xbﬁ)])
op

Var ([CI) (xaf) — @ (xp0)] + (B_ 5)
[L ELE)
op

_ (8 2 (@) . @ ()) * Var ()

= [a20 (2aB)° + 36 (215)° — 206 (248) 24 (2,8)] Var (B)

To evaluate it, we simply replace g with B .

7.3 Bootstrap

The bootstrap is a computationally expensive, nonparametric technique for making statisti-
cal inferences. The bootstrap method allows us to approximate the variation of parameter
estimates (or function of these estimates). For a basic introduction with specific applications
using Stata, we recommend Poi (2004) and Guan (2003). For a thorough treatment of this
method, see Efron and Tibshirani (1986) and Mooney and Duval (1993). Here we present
only the most basic information.

To compute bootstrap confidence intervals for predicted outcome, the following steps are
taken:

1. From the original estimation sample, draw a simple random sample of size N with
replacement. This is called a resample. Using the resample, estimate the model and
compute the quantities of interest.

2. Repeat step 1 R times and collect the estimates from each subsample. Use the R
estimates to create an empirical probability distribution of the quantities of interest.
This distribution, known as the bootstrap distribution, is used to construct the confi-
dence interval. Essentially, the variation in estimates among the resamples is used to
estimate the standard error of the sample estimate.

20

We use three methods for computing confidence intervals from the R empirical estimates
of each parameter. The normal method assumes that the bootstrap distribution is approxi-
mately normal and uses the standard deviation from the bootstrap distribution to compute
the appropriate percentiles from a normal distribution. The percentile method determines
the o and 1 — « percentile from the bootstrap distribution without any assumption about the
shape of that distribution. With this method, the bounds cannot exceed possible values for
the statistic in question. The bias-corrected method adjusts for bias between the predicted
probabilities and the average of simulated predicted probabilities. By default, prvalue uses
the percentile method.

8 Saved Results

All results that might be useful for Monte Carlo simulations, plotting, or other post-estimation
analysis are saved to global strings or matrices. While the typical user will not need this
information, it is needed when you are writing programs that use the results computed by
prvalue. Additional information can be obtained with help _pecollect.

petype is a global string with the type of model being estimated. The string contains
three words. The first word contains e (cmd) for the model being analyzed. Word 2 classifies
the type of model as either typical for all model except zip and zinb which are classified
as twoeq. Word 3 indicates the general type of outcome and is one of the words: binary,
count, mlogit, ordered, regress, or tobit.

pecimethod is a global string indicating the type of confidence interval that was com-
puted. The first word is m1, delta, ept, or bootstrap. The second word indicates how the
bootstrap confidence intervals were computed, either normal, percentile or biascorrected.

peinfo is a 3x 11 matrix with information about the model and options used with prvalue.
Row 1 contains information on the current call to prvalue. Row 2 contains information on
prvalue for the model last saved with the save option. Row 3 contains information on the
differences between the current and saved information. Normally, rows 1 and 2 have identical
information. Columns contain the following information:

Column 1: number of right-hand-side variables.

Column 2: number of categories in the outcome.

Column 3: level for confidence interval (e.g., 95 not .95).

Column 4: z-value for confidence interval at given level.

Column 5: number of right-hand-side variables for inflation in zip and zinb.

Column 6: 1 if model has no constant, else 0.

Column 7: base category for mlogit.

Column 8: stdp for binary models.

Column 9: number of requested replications for bootstrap (i.e., the number specified by
the rep option).

Column 10: number of completed replications for bootstrap. When a estimates cannot
be computed for a given bootstrap sample, it is not counted.

21

Column 11: value of the maximum number of values of predicted probabilities in count
models, corresponding to the maxcnt option.

pebase and pebase2 contain the base values for the z’s in computing the predictions.
The jth column of pebase is the jth right-hand-side variable in the model. The jth column
of pebase?2 is the jth right-hand-side inflation variable in zip or zinb. If save and dif are
used, the three rows are in the matrix correspond to: 1) the current model; 2) the saved
model; and 3) differences between the current and save values.

pepred contains the predictions computed by prvalue. This matrix has 7 rows. I has
one column for each outcome, with a minimum of 4 columns. Rows contain the following
information.

Row 1: values of the outcome category (e.g., 0, 1, 2).

Row 2: predicted probabilities for the value in row 1 for the current model.

Row 3: predictions other than probabilities for the current model.

Row 4: predicted probabilities for the value in row 1 for the saved model.

Row 5: predictions other than probabilities for the saved model.

Row 6: the difference between rows 2 and 4.

Row 7: the difference between rows 3 and 5.
For rows 2, 4 and 6, the columns contained predicted probabilities corresponding to the
categories in row 1. Rows 3, 5 and 7 contain predictions for other quantities (where not
all columns are used for all models). Column 1 contains x’ B from the first part of model.
Column 2 contains /1 for count models. Column 3: x’ ,@ from the inflation part of zip and
zinb. Column 4: Pr (always 0) for zip and zinb.

peupper and pelower contains the lower and upper confidence limits corresponding to
the information in pepred.

peuppct, pelopct, peupbias, pelobias, peupnorm and pelonorm are created when
the bootstrap method is used. They contain the upper and lower limits for all three meth-
ods of computing confidence intervals: percentile, bias-corrected, and normal approximation.
Whichever method is selected as an option in the prvalue command (e.g., prvalue, boot
normal) is also contained in peupper and pelower. The information in each matrix corre-
sponds to the information in pepred.

9 References

Cox, Christopher and Guangqgin Ma. 1995. “Asymptotic Confidence Bands for Generalized
Nonlinear Regression Models. “ Biometrics 51:142-50.

Efron, Bradley and R. Tibshirani. 1986. “Bootstrap Methods for Standard Errors, Confi-
dence Intervals, and Other Measures of Statistical Accuracy.“ Statistical Science 1:54-
75.

22

Efron, Bradley and Robert Tibshirani. 1993. An introduction to the bootstrap. New York:
Chapman & Hall.

Guan, Weihua. 2003. From the help desk: Bootstrapped standard errors. The Stata
Journal 3:71-80.

Liao, Tim Futing. 2000. “Estimated Precision for Predictions from Generalized Linear
Models in Sociological Research.* Quality & Quantity 34:137-52.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks, CA: SAGE Publications.

Long, Scott and Jeremy Freese. Forthcoming. Regression Models for Categorical Dependent
Variables Using Stata. Second Edition. College Station, Texas: Stata Corporation.

Mooney, Christopher Z. and Robert D. Duval. 1993. Bootstrapping: A Nonparametric
Approach to Statistical Inference. Newbury Park: SAGE Publications.

Poi, Brian P. 2004. From the help desk: Some bootstrapping techniques. The Stata Journal
4:312-328.

File xulong-prvalue-23Aug2005.tex

23

