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1 General Formula

The delta method is a general approach for computing confidence intervals for functions of
maximum likelihood estimates. The delta method takes a function that is too complex for
analytically computing the variance, creates a linear approximation of that function, and
then computes the variance of the simpler linear function that can be used for large sample
inference.

We begin with general result for maximum likelihood theory. Under standard regularity
conditions, if 3 is a vector of ML estimates, then

vn (ﬁ — ﬁ) 4N [O,Var (B)] : (1)

Let G (8) be some function, such as predicted probabilities from a logit or ordinal logit
model. The Taylor series expansion of G(3) is

G(B) = G(B)+(B-B)C'(B)+(B-B)GC"(5)(B - 0)/2 2)
= G(B)+(B~B)C(B)+o(B-B) .

where G'(8) and G”(3) are matrices of first and second partial derivatives with respect to
3, and 3" is some value between 3 and (3. Then,

Vi [G(B) = G(8)| = (B - BYG'(B) + 0,(1) , (3)
which leads to G(8) — N <G(ﬂ), 8%?) Var(fi)ag—(ﬁm> (Greene 2000; Agresti 2002). To
estimate the variance, we evaluate the partials at the ML estimates, %g,'x) 525’ which
leads to R R -

~ oG ~ 0G
Var (G(B)) = 9GB) (3258 | (4)
B B
For example, consider the logit model with
G(B)=Pr(y=1[x)=AXB) . (5)

!For information on related programs and future updates to this program, please check
www.indiana.edu/ ~jslsoc/spost.htm .



To compute the confidence interval for Pr(y = 1 | x), we need the gradient vector

9G(B) _ [ OAX'B) OA(B) . OAXB) }’ (6)
BJe] 9By 2 Ik '
Since A is a cdf, a%(;;ﬁ) = agi’ff) %’gf = \ (x'03) xx, then
oG /
T~ [AB) AP e AGB) o ] )

where o = 1. To compute the confidence interval for a change in the probability as the
independent variables change from x, to x;, we use the function

G (B) = A(Blxa) = A(Blxs) (8)
where
0G(B) _ 9[A(Bxa) — A(Bxs)]
98 98 (9)
OA(BIx)  DA(BIx,)
B B
Substituting this result into equation 4,
_ [OABIxa), 7 OABIXa) OABI%a)y, 7 OA(BIx)
Var(G(e) = | var@od | - | SRy @ BB o)
OABIx) = IA(B]Xa) OABIxy), 5 IAB]x)
- [P ar gy 20 | [ ORIy gy 20

We now apply these formula to the models considered in prvalue2.

2 Binary Models

In binary models, G(3) = Pr(y = 1 | x) = F(x'3) where F is the cdf for the logistic, normal,
or cloglog function. The gradient is

OF(x'B) OF(xX'B)ox'B

= = ! 11
where f is the pdf corresponding to F'. For the vector x it follows that
OF(x'B) ,
S5 = [P (12)

From equation 4,
Var [Pr(y = 1| x)] = f(xXB)x'Var(B)xf(x'8) = f(x'B)*)'Var(B)x

The variances of Pr(y = 0 | x) and Pr(y = 0 | x) are the equal since

o -FB) _
5 = A (13)

and
Var [Pr(y = 0| x)] = [~ F(X B> X Var(B)x . (14)
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3 Ordered Logit and Probit

Assume that there are m = 1, J outcome categories, where

Priy=m|x)=F (1, —XB) — F(Tp1 —x'B) for j=1,J.

(15)

Since we assume that 79 = —oo and 75 = 00, F (7o —x'3) =0 and F (7; —x'3) = 1. To

compute the gradient,

OF (1, —X'B) _ OF (1, —X'B) O (T, — X'3)

= [ (Tm —X'B) (=)

IBy, I (Tm —X'B) By,
and
OF (T, —X'B)  OF (T, —X'B) 0 (11, — X'B)
T ) (Tm — X'0) T
It follows that oF )
(TgTj ) =f(tm—%X0) ifj=m
and )
OF T =%B) _isism .
or;

Using these results with equation 15,
IOPr (yi =m | x;)
9B

= [f(rm —xB) (=21)] = [f (Tin—1 — X'B) (—21)]
= —2pf (T — Xlﬁ) - [f (Tm—1 — X'ﬂ)]

and
OPr(y; =m | x;) OF (T, —X'B)  OF (Ti—1 —X'B)
ot ; or; B or;
= f(tm—xXB)ifj=m
= —f(Tma—xB)ifj=m-1
= 0 otherwise.

For example, with three categories:
Priy=1|x) = F(ri—%x08)-0
Priy=2|x) = F(r2—x'8) - F(r1-xB)
Priy=3|x) = 1—-F(r,—%x0) ,

then
o Pr (yé;kl [x) _ _, [f (11 — x'B)]
L) (2= xB) - £ i - %)
O0Pr (yé;k?) | x;) = —ap[—f(r2—%XB)] .
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With respect to T,
OPr(y;i=1]x;)

o = f(r—xP)
OPr(y; =1]x) — 0

87'2 N
aPr(yZ:2|xz) . ,

87—1 - f(Tl Xﬂ)
OPr(y; =2 x;) B ,

87—2 - f<T2 X/B)
OPr(yi=3]x;) 0

87'1 N
OPr(yi=3|x;) 0

(37'2 N .

To implement these procedures in Stata, we create the augmented matrices:

/

gr=[p 1 - 7]

and
x; =[x 10 0]
x; =[x 01 - 0]
x5, =[x 00 - 1],
such that

x;/B"=1;—x8.

We then create the gradients described above.

4 Generalized Ordered Logit

(34)

(35)

(36)

The generalized ordered logit model is identical to the ordinal logit model except that the
coefficients associated with x differ for each outcome. Since there is an intercept for each

outcome, the 7’s are fixed to zero and B ; = 0 for identification. Then,

Priyi=1[x) = F(-X8,)
Pr(y,=m|x;) = F(—XB,)—F(-x'B,,_,) form=2,J-1

Pr(y,=J|x) = —F(—xB,_1) .
The gradient with respect to the 5’s is
OF (—%x'3,,)

aﬁm,k =f (_X,/Bm) (_xk) )



while no gradient for thresholds is needed. Then,

OPr(y, =m | x;) _

IR g (B - (1 (X80 0)] ()
5 Multinomial Logit
Assuming outcomes 1 through J,
Pr(y = mfx) = ~2Fn) (42)
; exp (x03;)

where without loss of generality we assume that 3; = 0 to identify the model (and accord-
ingly, the derivatives below do not apply to the partial with respect to 3,). To simplify
notation, let A = > exp (Xﬂj). The derivative of the probability of m with respect to 3,, is

OPr(y =mlx) Jexp(x8,,)A"!

8. 0B, )
Using the quotient rule,
0Pr(y = m|x) dexp (x08,,) 0A
= [A——"~ — A2 44
B, 8. exp (xB3,, )85 (44)
Examining each partial in turn.
dexp(xB,) _ Dexp(xB,) %8, )
08, 0x0,, 08,
exp (x8,,)x if m=n
0if m#n
and
J J
0> exp (xﬁj) > 0exp (xﬁj)
= = = (46)
9B, 9B,
= exp(x8,)x

where the last equality follows since the partial of exp (xﬂj) with respect to 3,, is 0 unless
j = n. Combining these results. If m = n,

0Pr(y = m|x)

9B [Aexp (x8,,) x — exp (x8,,)° x| A™? (47)
[

Aexp (x03,,) — exp (xﬁm)ﬂ A%
exp (xB,,) _ exp (xB,,) exp (xB,,)
A A A
= [Pr(y=m)—Pr(y=m)Pr(y=m)]x
= Pr(y=m)[1—-Pr(y=m)|x.




For m # n,

. Pr(g;nmbc) = [0—exp (xB,,) exp (xB,,) x] A7
. exp (xB,,) exp (x83,,) <
_ < X

= Pr(y=m)Pr(y=n)x.

For example, for two x’s and m =1 :

i - PmPnT1 mi/nd2 men

6 Poisson and Negative Binomial Regression

In the Poisson regression model,
p; = exp (x;8)

so that

Using matrices,

9Py

Jexp (x'B)
P
dexp(x'3) 0x'B

ox'3 Py,

= exp(x'B)xy

B

The probability of a given count is

Pr (ylx) =

so we can compute the gradient as:

dexp (—p) p/y!

9Py,

U

dexp (X'8)
B
Jexp(x'B) 0x'B

ox'B 0P
Ux

exp (—p) p¥
y!

I

1 dexp (=

) 1 Op

oy Iy
6

By

(52)

(53)

(54)

(55)



Since the last term was computed above, we only need to derive:

dexp (—p)p¥ o opr o Oexp(—p)

= exp (—p) yp " — ¥ exp (—p)
which leads to:
0 Pr (y|x 1 _
9Pr (ylx) = —u [exp (—p) yp? ™" — p¥ exp (—p)] (57)
Py, y:

_exp(—p)yp¥ — pexp (—u)xk

y!

ypy — ptt
exp (u) y!

Using matrices,

_ y _ v+l _
OPr(ylx) _ exp(=p)yp’ — p" exp (—p) (58)
op y!
yp’ — !
exp (1) y!

The negative binomial model is specified as

po= exp(x'B+e) (59)
= exp(x'B)exp(e) ,

where ¢ has a gamma distribution with variance o. The counts have a negative binomial
distribution I ) , v
yi +v v i\
Pr (yl | Xi) = ] ) (60)
yw!lw) \v+uw) \v+u

where v = a~!. The derivatives of the log-likelihood are given in Stata Reference, Version
8, page 10. To simplify notation, we define

r=lna, m=1/a, p=1/(1+ap), and y = exp (xB) (61)

and with 1 (2) being the digamma function evaluated at z,

‘9“‘%};]"‘) — ply—p (62)
DR | e e v (6

Then by the chain rule,
O0ln Pr (y|x) O0lnPr (y|x) 0 Pr (y|x)

ox ~ OPr (yx)  0xB (64)
_1 0Pr(y|x
~ Priyh 2R



o that OPr(yx)  OlnPr(yx)
r(ylx) OlnPr(y/x
xg  oxg W)

Similarly for 7,
OPr(ylx)  O0lnPr(ylx)
or or Pryk).
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