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B1 Introduction

Readings
Long & Freese: Chapters 1 and 2

0 Check there for references to other sources

Examples

1. Do-files and data for lecture examples are available
0 In Stata, run search mcosetup
0 mdoyear-topic.do

2. Lectures do not show all of the code

3. Use these command files as templates for your analysis
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Cross-sectional models for categorical outcomes
1. Binary outcomes: binary logit and probit
2.Nominal outcomes: multinomial logit

3.Ordinal outcomes: ordinal logit and probit

Focus on advanced methods of interpretation

1. Telling a story in the presence of nonlinearity

2.Regression coefficients are necessary but not sufficient
0 Avoid signs and stars approach

3. Interpretation using predictions transform the estimated parameters
0 Predictions conditional on values of regressors
0 Marginal effects of regressors
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Nonlinear models
1.In linear models the effect of xk on y does not depend on where it is evaluated
0 Unless nonlinearities are introduced with interactions or transformations
2.1n nonlinear models the effect of x, depends on:
0 The value of x¢
0 The values of other x's
3. Most models for categorical outcomes are implicitly nonlinear
4.In linear models, most of the work is done when the model is fit
5.In nonlinear models, the work begins
0 Nonlinearity make things harder and more realistic
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Linear model

y=a+ px+yd

E(y | x,d)

linear frame-nonlinV1.do jsl 2015-02-13

Categorical Data Analysis Introduction | 4

Inherently nonlinear models

_exp(a+px+yd)
_1+exp(a+,8x+7d)

n(x,d)

nonlinear frame-nonlinV1.do jsl 2015-02-13
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RHS (right-hand-side) variables are linear combinations
1. Notation

o xp=a+px

o x,p =4, + BAge, + p,Income,

0 X;B =B, + Bix; + ByXpp T+ Xi
2. Linear combinations can include

0 Product terms (e.g., X3=x1*x2)

0 Transformed regressors (e.g., X, = \/WI or X, =Ww’)

3. With CDA, these enhancements lead to unexpected subtleties
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Software
1. How you interpret models depends on your software
0 If post-estimation analysis is hard, you are unlikely to do it
2. Stata has great tools for post-estimation analysis
0 margins and related commands
0 suest and gsem for simultaneously fitting models
3. Other packages
OR
0 SAS
0 SPSS
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Roadmap

1. Linear regression model (LRM)

2. Binary regression models (BRM)

3. Estimation, testing, and fit

4.Testing marginal effects (ME)

5. Nonlinearities on the RHS (right-hand-side)
6. Comparing groups

7.Comparing effects across models

8. Nominal regression models (NRM)
9.0rdinal regression models (ORM)

10. Generalized marginal effects (GME)
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Tool: Locals in Stata
1. Macros are abbreviations representing characters or numbers.

2.Syntax:

local local-name *“string"
local local-name = expression

3.For example,

local rhs "varl var2 var3 var4"
local ncases = 198

4.To display a local:

local OPTmark "msym(square circle) mcol(red blue) jitter(5)"
. di " “OPTmark=®"
msym(square circle) mcol(red blue) jitter(5)

5.The opening quote " and closing quote ' are different.
Why is it called local?
1. Local macros exist only when a do-file is running.
0 When that program ends, the macro disappears
2.This makes do-files robust since everything is defined in the do-file.
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Example: a provenance tag

1. My do-files include a local to document provenance:

local pgm mypgml

local dte 2018-04-02

local who Scott Long

local tag “pgm".do “who" ~“dte*

2.1 can display the tag:

. di "“tag""
mypgml.do Scott Long 2018-04-02

Tool: Global macros
1. Global macros are created as:
global vars ""x1 x2 x3"
2. Content is retrieved using $globalname
display "$vars"
3. Globals can make do-files fragile since they stay in memory until you delete
them or leave Stata.
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B1 Linear regression

Readings and examples
Long & Freese: Chapters 3 and 4

mdo18-Irm-*.do

Objectives

1. Establish notation and terminology

2.Reinforce the ideas of linearity and nonlinearity
3. Explain identification

4.Introduce maximum likelihood estimation

5.Introduce margins based commands for post-estimation
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Notation

Outcome = linear combination + error

1. Yi=a+pX+e

1. Occupation = 3, + B Education + g, ParentEd + g,ParentOcc + ¢

2. Yi=xB+g
By
=[1 % ... %] ﬁl +& = [+ P+t fXi T 6
P

€ is unexplained variation
1.Randomness
2.Unobserved heterogeneity.
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Assumptions
1. Linearity.
3. E(g|x)=0.

5. Uncorrelated errors.

2. Not perfect collinearity.
4. Homoscedasticity.

6. Normality.

Irm-betas brmlrm-3xsV/3.do js| 2015-01-23
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Linearity
1.yis linearly related to the x's through the B's
Yy =B, + 5% +B.X +¢&
0 A unit change in x; has a constant effect ony
Collinearity
1. Multiple regression is used since the xi's are collinear
2.The x's cannot be perfectly collinear
Homoscedasticity
1. All observations have the same variance for €.
Var (s |x;)=0c" foralli
Errors are uncorrelated
2.When would this assumption be violated? What are the consequences?
3.Imagine duplicating all observations and re-estimating. What changes?
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Conditional mean error and identification
1. We assume the average error is 0: E(Ei | Xi) =0. How do you know?

— E(yI)=at+px .
——— Fitted regression

Actual grades

T

0 1 2 3 4 5
Hours studied per week
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General principles of identification

1. Unidentified parameters cannot be estimated with more data.
2.Parameters are identified by:

0 Adding assumptions.

0 Using new kinds of data.
3. ldentification is not all or nothing

0 Some parameters can be identified while others are not.

4. Combinations of unidentified parameters can be identified, while the
individual parameters are not.

0 a+6 is identified, but a or & are not individually identified.
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Interpretation with marginal effects
1. Marginal effects measure
a.The change in the outcome
b.for a change in one regressor
c. holding other regressors constant.
2.Two types of marginal effects
0 Discrete change in E(y) as xi changes a fixed amount.
0 Marginal change in E(y) for an infinitely small change in a regressors.
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DC: Discrete change in E(y|x)
1.Start at E(Y|X3X3):

1.Endgat  E(y|x,x,+1): expected value after change in x3,

expected value before change in x3

2.The discrete change for a change of 1 in x3:
AE(y | x,X3)
AX

= End —Start

3
=E(y|x,x+1)—E(y[x,X,)
=[ B+ Bx+ Box, + B (% +1) | <[ By + Bx+ fox, + B |
:ﬁs
3.The amount of change does not depend on
0 The specific value of x3
0 The specific values of the other x's that are held constant

4. Graphically,...
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Discrete change

Irm-betas brmlrm-3xsV3.do js| 2015-01-23
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MC: Marginal change in E(y|x)

1. The instantaneous rate of change in E(y|x) as x« changes, holding other x’s

constant

OE(y|x) _0xB _5

X, ox, -
2.MC is the slope at a specific location
3.In the LRM, the MC does not depend on

0 The value of xi

0 The values at which other x's are held constant

Marginal and discrete change in LRM
In linear models that do not have nonlinearities

GE(y|x) AE(ylx)

0X, AX, =Ai
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Simple interpretation due to linearity
Continuous variables

For a unit increase in xx the expected change in y is i, holding other variables
constant.

For each additional year of education, income is expected to increase by
51,247, holding other variables constant.

Dummy variables coded as 0 and 1:

Having characteristic xi (as opposed to not having the characteristic) results in an
expected change of Bk iny, holding other variables constant.

Being a female decreases the expected salary by 5843, holding other
variables constant.
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Can you hold other variables constant?
1. Marginals assume one variable changes with other variables not changing
2. With linked variables this is mathematically impossible
0 x and x? must change together
3. More generally

0 Does it make substantive sense to change one regressor holding others
constant?

0 Can you increase education holding everything else constant?
What does it mean when we say a variable is changing?
1. What does this counterfactual mean?

0 Increase education by 4 years while holding income and occupation
constant.

2. Does it make sense to imagine changing gender?
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Example: wages in Canada

Fox (2008) Applied Regression Analysis and Generalized Linear Models 2nd, p267.
Survey of Labour & Income Dynamics, Ontario, Canada, 1994.

Model 1: wages = 3, + f,male + f,edyears + f,age + ¢

Descriptive statistics - #0

. use slid-ontarioOl, clear
(Canada®s 1994 Survey of Labor and Income Dynamics \ 2011-04-04)

. codebook, compact

Variable Mean Min Max Label

wages 15.54459 2.3 49.92 Hourly wages

male .4978734 0 1 Is male?

age 36.95822 16 65 age in years
edyears 13.21191 0 20 years of education
N=3,997
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Fit M1 - #11
Source | SS df MS Number of obs = 3,997
+ F(3, 3993) = 590.67
Model | 75828.1741 3 25276.058 Prob > F = 0.0000
Residual | 170869.757 3,993 42.7923258 R-squared = 0.3074
+ Adj R-squared = 0.3069
Total | 246697.931 3,996 61.736219 Root MSE = 6.5416
wages | Coef. Std. Err. t P>|t] [95% Conf. Interval]

+
male | 3.47367 .2070092 16.78 0.000 3.067817 3.879524
age | .2612932 .008664 30.16 0.000 -244307 .2782794
edyears | .9296491 .0342567 27.14 0.000 .8624868 .9968115
_cons | -8.124231 .5989773 -13.56 0.000 -9.298561 -6.949902

Linear in wages

For each additional year of age, wages are expected to increase by S0.26,
holding other variables constant.

Being male increases wages by $3.47 at all ages and years of education.

Graphically, on the next page...

Categorical Data Analysis

Linear Regression | 14

Plotting age and predicted wages - #13

M1: linear with dummy for gender

o
S ||--m-- Men
—@&— Women

T T
25 35 45 55 65
Age
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Standardized coefficients

1. Standardized coefficients remove the scale of variables.

2.1n binary & ordinal models, standardization is required due to identification.
Tool: Standardizing to 1

1.Standard deviationof xc:  sd(xx)=0

2.Standard deviation of ax,: sd(axc)=ao
3.Then: sd(1/oxk)=(1/0) sd(xk)=0/c=1

Categorical Data Analysis Linear Regression | 16

Standardizing coefficients by rescaling variables - #12

. egen Swages = std(wages)

. egen Sage = std(age)

. egen Sedyears = std(edyears)
. sum Swages wages Sage age

Variable | Obs Mean Std. Dev. Min Max
+

Swages | 3,997 2.05e-09 1 -1.685654  4.374998

wages | 3,997 15.54459 7.85724 2.3 49.92

Sage | 3,997 8.64e-10 1 -1.745936 2.336036

age | 3,997 36.95822 12.004 16 65

. * unstandardized variables
. regress wages male age edyears

. * y & x standardized
regress Swages male Sage Sedyears

. * x standardized
. regress wages male Sage Sedyears

. * y standardized
. regress Swages male age edyears

This is what listcoeT does
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Standardized coefficients with listcoef - #12
. listcoef, help

regress (N=3997): Unstandardized and standardized estimates

Observed SD: 7.8572
SD of error: 6.5416

| b t P>|t] bStdX bStdYy  bStdXY SDofX
+
male | 3.4737  16.780 0.000 1.737 0.442 0.221 0.500
age | 0.2613  30.159 0.000 3.137 0.033 0.399 12.004
edyears | 0.9296  27.138 0.000 2.823 0.118 0.359 3.037
constant | -8.1242 -13.564 0.000 - - . .
b = raw coefficient
t = t-score for test of b=0
P>|t] = p-value for t-test
bStdX = x-standardized coefficient
bStdy = y-standardized coefficient
bStdXY = fully standardized coefficient
SDofX = standard deviation of X
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Fully standardized coefficient

For every standard deviation increase in age, wages are expected to
increase by .399 standard deviations, holding other variables constant.
b t  P>t] bStdX  bStdY  bStdXY SDOFX

|
+
age | 0.2613  30.159 0.000 3.137 0.033 0.399 12.004

x-standardized coefficient

For every standard deviation increase in age, wages are expected to
increase by $3.14, holding other variables constant.
b t  P>|t] bStdX  bStdY  bStdXY SDofX

|
age | 0.2613 30.159 0.000 3.137 0.033 0.399 12.004

y-standardized coefficient

Being a man increases the expected wages by .442 standard deviations,
holding other variables constant.
b t  P>t] bStdX  bStdY  bStdXY SDofX

|
+
| 3.4737 16.780 0.000 1.737 0.442 0.221 0.500

male
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Linear and nonlinear models

A: Linear model B: Nonlinear model

(x,d)

linear frame-nonlinV1.do s| 2016-02-13

nonlinar frame-nonlinV1 do sl 2015-02-13
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Nonlinear compared to linear models

Marginal effect of xk in linear models
1. The size of the effect does not depend on the value of xi
2.The size of the effect does not depend on the values of other x's
3. Marginal change and discrete change are equal
GE() _ AE()
OX, AX,

Marginal effect of xx in nonlinear models
1.The size of the effect does depend on the value of xi
2.The size of the effect does depend on the values of the other x's
3. Marginal and discrete change are usually unequal
GE()  AE()
OX, AX,
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Nonlinear linear regression models
1.In a linear model, the x's enter in the linear form xB = Bo+ Bwx1 + Baxz2 +...

2.The effects of regressors can be nonlinear by including transformations.

y=p8,+BW, +ﬂ2W]2+£

Quadratic:
=P+ BX +BX, +e

Loglinear: y=Inz=/+BX +5X +¢&
Y=+ BX + LW, +&

=:[%‘+/ZXI+'[EX24'8
Graphically...

Square root:
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Linear in sqrt(W); nonlinear in W

y=ﬁ0+ﬂlxl+ﬁ2\/w—2+g

=B+ BX+ X, +¢&

o Linearin X  Nonlinear in W

o o

> >

> >

© ©

© ©

o T T T T 1 o T T T T 1
0 1 2 3 4 5 0 5 10 15 20 25

X = sqrt(W) W =X* X

X_sqrtW Irm-nonlinerhs\V/1.do scalt long 2015-06-08 W_Xsqrd IrmenonlinerhsV/1.do scott lang 2015-06.09
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Example: wages in Canada — continued
Model 1: wages = 3, + fmale + S,edyears + f,age + ¢
Model 2: wages = 3, + f,male + S,edyears + B,age + B,age’ + &
Model 3:  wages = A + B edyears + S, age + 3, age” + &
wages = B)' + B, edyears + 3" age + B, age’ + &

Descriptive statistics - #0

Variable Mean Min Max Label

wages 15.54459 2.3 49.92 Hourly wages

male -4978734 0 1 Is male?

age 36.95822 16 65 age in years
edyears 13.21191 0 20 years of education
N=3,997

M1: baseline regression - #11
wages = 3, + f,male + f,edyears + p,age + ¢
Plotting the effect of age, gender and wages...

Categorical Data Analysis Linear Regression | 24

Plotting age and predicted wages - #13

M1: linear with dummy for gender

S| --m-- Men
—®— Women

Wages

25 35 45 55 65
Age
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M2: adding a squared term

1.In M1, the effect of age is: (a) always positive; or (b) always negative; or (c)
always 0.

2.To allow the effect to be positive and negative, we add age-squared:
wages = f3, + B male + p,edyears + f,age + f,age’ + ¢

As age increases, age-squared increases faster

g = The greater the age, the greater the
g/ impact of Bage-squared-
<
v s = |f Bage and Page-sq have different signs, the
®&] effect of age can change directions as the
g size of age? overwhelms the size of age.
o

age
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Specifying M2 with age-squared
1.1 can create a squared variable with generate:
gen agesq = age*age
2. Factor syntax to implicitly create age-squared from age:
c.age#c.age
where C. indicates continuous; # indicates multiply

3.For example,
. sum agesq c.age##c.age

Variable | Mean Std. Dev. Min Max
+
age | 36.95822 12.004 16 65
agesq | 1509.97 934.969 256 4225
c.agettc.age | 1509.97 934.969 256 4225

4.Factor variables:
0 Created dynamically as needed
0 Disappear when not needed
0 Keep track of how variables are related
0 Extremely useful
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LRM that is quadratic in age - #22

. regress wages male c.age##c.age edyears

wages | Coef.  sStd. Err. t P> t] [95% Conf. Interval]

+
male | 3.465888 -2017898 17.18 0.000 3.070267 3.861508
age | 1.001166 -0517182 19.36  0.000 -8997691 1.102562
c.age#c.age | -.0096636 -0006664 -14.50  0.000 -.0109702 -.008357
edyears | -8312951 -0340748 24.40  0.000 - 7644895 -8981007

|

_cons -19.57354 -9820115 -19.93 0.000 -21.49883 -17.64825

The effect of being male

Men are expected to earn 53.46 more than women with comparable
characteristics.

The effect of age
1. We can’t interpret the coefficients for age and age-squared are:
Bage = 1.001166 and  PBagesq = --0096636
since you can’t increase age and hold age-squared constant; and vice versa.
2.Instead, we look at predictions or marginal effects of age
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Plotting age and wages - #23

The effect of age depends on your age.

M2: age-saquared with dummyv for gender
M2 age-squared with dummy Tor g

o
~ ——M-- Men
—@— Women
o |
@
-y
» _,.——’. L |
Q _m
o X< R
o ~ |
=
SEA
o
T T T T T
25 35 45 55 65

Age
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Post-estimation predictions in Stata

Native Stata commands
1. Predictions can be things like:
0 Expected values of the outcome
0 Marginal effects on the outcome
1.predict makes predictions at observed values of the regressors
2.margins makes predictions at observed or users specified values
0 Predictions can be averaged
3.marginsplot plots predictions
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SPost13 commands
1.These commands use margins for predictions
mtable: Create tables of predictions
mgen: Generate variables with predictions for plotting
mchange: Marginal effects
mlincom: Linear combinations of predictions.
2.These commands
0 Automatically construct multiple margins commands
0 Have compact output that combine results from multiple commands
Stata or SPost?

1. Stata commands are more general and work with all models, but the output is
more difficult.

2.SPost works for most cross-sectional models and is easier for many things.
3.To use marginsplot, you must use margins.
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atspec: specifying values of regressors in margins and m*
atmeans: all regressors at their means.
margins, atmeans

at() for single values of regressors

margins, at(age=25 male=1 edyears=20) atmeans
Variables not specified are held at their mean.
at() with linked variables

margins, at(age=25) atmeans

If c.age#c.age is a regressor, predictions are made at 25*25 for age-squared.
at() for multiple values using a numlist
margins, at(age=(25(5)75) male=1 edyears=20) atmeans

Predictions are computed for age =25, 30, 35, etc.
at() at multiple specified values
margins, at(age=25 male=1 edyears=20) ///
at(age=60 male=0 edyears=12) atmeans
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M2 continued: Plotting predicted wages

Predictions with mtable - #22
. mtable, atmeans at(age=(25(5)65) male=(0 1) edyears=20)

Expression: Linear prediction, predict()

| male age xb

+
1] 0 25 17.414
2] 0 30 19.292
3] 0 35 20.736
| 0 40 21.749
5] 0 45 22.328
13 | 1 40 25.034
14 | 1 45 26.242
15 | 1 50 26.898
16 | 1 55 27.002
17 | 1 60 26.554
18 | 1 65 25.554

Specified values of covariates
edyears

Current
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Make predictions with margins - #23
. margins, atmeans at(age=(25(5)65) male=(0 1) edyears=20)

Adjusted predictions Number of obs = 3,997

Model VCE : OLS

Expression : Linear prediction, predict()

1._at : male = 0
age = 25
edyears = 20

2._at : male = 0
age = 30
edyears = 20

: male = 0

age = 65
edyears = 20

10._at : male = 1
age = 25
edyears = 20
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18._at : male = 1
age = 65
edyears = 20
| Delta-method
| Margin Std. Err. t P>|t] [95% Conf. Interval]
+
_at |
1 ] 16.04176 .2836861 56.55 0.000 15.48557 16.59794
2 | 18.3901 .2671511 68.84 0.000 17.86633 18.91386
3 1 20.25526 .2685062 75.44 0.000 19.72883 20.78168
4 | 21.63724 .2737742 79.03 0.000 21.10049 22.17399
5 1 22.53603 .2808891 80.23 0.000 21.98534 23.08673
6 | 22.95165 .2992583 76.70 0.000 22.36494 23.53837
7 1 22.88409 .3452619 66.28 0.000 22.20719 23.561
8 | 22.33335 -4321969 51.67 0.000 21.48601 23.1807
9 | 21.29943 .5638506 37.77 0.000 20.19397 22.4049
10 | 19.50765 .2883744 67.65 0.000 18.94227 20.07302
11 | 21.85598 .2716595 80.45 0.000 21.32338 22.38859
12 | 23.72114 .2725945 87.02 0.000 23.18671 24.25558
13 | 25.10312 .2774585 90.48 0.000 24.55915 25.6471
14 | 26.00192 .2842255 91.48 0.000 25.44468 26.55916
15 | 26.41754 .3022107 87.41 0.000 25.82504 27.01004
16 | 26.34998 .3477177 75.78 0.000 25.66826 27.0317
17 | 25.79924 .4341173 59.43 0.000 24.94813 26.65035
118 | 24.76532 .5653219 43.81 0.000 23.65697 25.87367

Categorical Data Analysis Linear Regression | 35

Plotting with marginsplot: quick plots after margins - #24

. marginsplot

Adjusted Predictions with 95% Cls

30
I

Linear Prediction

25 30 35 40 45 50 55 60 65
age in years
—@— 0 Female —--®-- 1_Male
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Code: Adding options to marginsplot

marginsplot, noci /// #1
ylab(0(10)40, labsize(*1.1) glwid(*.7) glcol(black*.3) grid gmin gmax) /// #2
x1ab(25(10)65, labsize(*1.1) glwid(*.7) glcol(black*.3) nogrid) /// #3
legend(order(2 "Men™ 1 "Women'™) ring(0) pos(11) rows(2)) /// #4
plotlopts(lcol(blue*1.) Ipat(solid) msym(0) msiz(*1.) mcol(blue*1.)) /// #5
plot2opts(lcol(red*1.) lIpat(dash) msym(S) msiz(*.9) mcol(red*1.)) /// #6
plotopts(lwid(*1)) xtitle(Age™) ytitle("Wages™) /// #7
title("M1: linear with dummy for gender™ ™ ",ring(2) pos(11l) size(*1)) /// #8

caption(” graphname® “tag"", size(vsmall) pos(5) col(gsl0)) /// #9
scale(1.1) // #10
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M2: Plotting predicted wages

M2: age-squared with dummy for gender

[}
S| --m-- Men
—®— Women
(=
@
-y
» _,l——‘. L |
]
g8
=
o
o4
T T T T T
25 35 45 55 65
Age
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M3: Interactions with gender

1. Let the coefficients differ by gender:
wages = ) + 3} edyears + B\ age + f3,' age’ + &
wages = )" + B)"edyears + )" age + )" age’ + ¢

2. Fit separate models:

regress wages male c.age c.age#c.age edyears if female
regress wages male c.age c.aget#c.age edyears if male

3. Or fit single model with interactions:
regress wages ibn.male ibn.male#(c.edyears c.age##c.age), nocon
0 1bn means no base value
0 For now, don’t worry about the details
4. The predictions are shown in this graph...

Categorical Data Analysis Linear Regression | 39




Model 3 with Interactions

(=]
S| --m-- Men
—®— Women
Q|
I35
e e
3 -
g1
=
o
o4
T T T T T
25 35 45 55 65

Age
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Are wages of men greater than those of women?

Gender differences are significant when the Cl crosses 0.

M3: age-squared with gender interaction
o
L2
8
s
LRl
K - g
E“” - —-a
k] g') _-m
2 Sol -
; g1z
8 =
% (=]
2 o o]
©
K}
= o]
.
25 35 45 55 65 25 35 45 55 65
Age Age
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Summary of nonlinear linear models

1. Nonlinearity has many forms.

2. With some forms, coefficients are easy to interpret (e.g., loglinear).
3. With other forms, coefficients have no direct interpretation.

4. Predictions can be used to interpret nonlinear models of any form.
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Estimation and testing
Details in Estimating, Testing and Fit lecture
Estimation by OLS
1. OLS minimizes the sum of the squared residuals:
A\2
SSR=3 (v, -xB) =z (&)
2.0LS has a simple "closed-form" formula
~ . ~1 '
B=(XX) XYy

Var(ﬁ) =o° (X'X)fl
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Overview of hypothesis testing

Decision
Ho: B=0 Accept Hy Reject Ho
In fact B=0 No error Type |: Pr(reject true)=a
Area in the shaded tail.
Size of the test.
In fact B20 Type II: accept false No error

Power of test.

4.1f the errors are normal and B¢=0, then

O S
k ~ N-K-1 Reject Ho Reject Ho
ar( A, ) < 7
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Example of t-tests in regression - #11
. regress wages male age edyears

Source | SS df MS Number of obs = 3,997
+ F(3, 3993) = 590.67
Model | 75828.1741 3 25276.058 Prob > F = 0.0000
Residual | 170869.757 3,993 42.7923258 R-squared = 0.3074
+ Adj R-squared = 0.3069
Total | 246697.931 3,996 61.736219 Root MSE = 6.5416
wages | Coef. Std. Err. t P>]t] [95% Conf. Interval]

+
male | 3.47367 .2070092 16.78 0.000 3.067817 3.879524
age | .2612932 .008664 30.16 0.000 .244307 .2782794
edyears | .9296491 .0342567 27.14 0.000 .8624868 .9968115
_cons | -8.124231 -5989773 -13.56 0.000 -9.298561 -6.949902

Men have significantly higher wages than women (t=16.78, p<0.01 for a
two-tailed test).

Each additional year of age increases expected wages by nearly a dollar,
holding other variables constant. (p<.01 for a 2-tailed test).
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Overview of continuous LHS
1.LRM is the foundation for CDA models
0 Be careful about generalizing from LRM to other models!
2.Variables enter the model as xB, called the index function.
0 xB allows flexible specifications through interactions and transformations.
0 Complictions on the RHS make the LRM nonlinear
3. Nonlinearity makes interpretation more complicated
O Regression parameters no longer provide direct insights into effects.
0 They are most useful for making predictions
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B1 Binary outcomes

Readings and examples
Long & Freese: Chapters 5 and 6

0 See references in these chapter
mdo18-brm-*.do

Objectives
1. Derive the binary regression model (BRM)
2. Explain interpretation using predictions.
O Interpreting predictions not parameters in nonlinear models

3. Applications of predictions and marginal effects
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Deriving the BRM

1. Binary logit and probit can be derived four ways.

0 A nonlinear probability model

0 A random utility model for chosing the optimal outcome

0 Generalized linear model linking predictors and outcome

0 Regresson on latent variable (LV) the generates observed outcomes
2.1focus on the LV approach

0 It builds on LRM

0 It highlights the scalar identication of parameters

0 It generalizes easily to other models
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BRM as a latent variable model

1.The unobserved propensity y* generates the observed y:

-00 Not in LF | In the LF 0

| y
y=1

y=0
T

where not all women in LF have the same propensity to work
2. A structural model regresses y* on the x’s
Y, =a+pBx+e or y =xB+eg
3.The probability of observed y depends on y*:
Pr(y=1\x)=Pr(y* >T|X)

4. Graphically,....
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The structural model y* = a + Bx + € with Pr(y=1|x) shaded

y=11
> y=0

brmirm-3xsV4.do js| 2017-03-02 -brm-prob
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Tool: PDF and CDF of probability distribution

l.y: -4-3-2-101234

2.PDF:  Pr(y=-4), Pr(y=-3), Pr(y=-2), Pr(y=-1), Pr(y=0), Pr(y=1), Pr(y=2), Pr(y=3)
3.CDF: Pr(y<-4), Pr(ys<-3), Pr(ys<-2), Pr(ys-1), Pr(y<0), Pr(y<1), Pr(y<2), Pr(y<3)

1

Pr(y<0) =
Priy=-4)
+ Pr(y=-3) 078
>
+ Pr(y=-2) =
+ Pr(y=-1) § 05
+Pry=0) | &
0.25 ‘
4 3 2 1 0 1 2 3 4
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Errors in the latent variable model
The error is assumed to be normal or logistic.
Normal errors
1. Normal PDF: standard deviation o

-l

1 2
Eps it =0,0) =—F—=¢x
(G ) oo p[zaz]

2.Standardized normal PDF: standard deviation o=1 simplifies distribution

s 1 -
0 (&)= EeXP[Tj

3.Standardized normal CDF

o (ar)= | o 5 Ja
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Logistic errors

1. Standardized logistic PDF: 0=1 makes distribution more complex

28 (SL): %exp(%q)

2
[1 +exp(%gL)J
2. Standard logistic PDF: o=mt/v3=1.81... is simpler.
}v (g _ exp(sL )

H [l +exp(e, )]2
3.Standard logistic CDF: o=r/v3=1.81...
exp(e,)

AMe)= 1+exp(g,)
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PDF and CDF for normal and logit curves

Panel A: pdf's for logistics and normal distributions ° Panel B: cdf's for logistics and normal distributions

Normal: °=1
- Logistic: o'=r'/3
- Logistic: 6'=1

Normal: o°=1
Logistic: o'=r
Logistic: =1

o
81
s
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Computing Pr(y=1|x) from y*

Pr(y=1|x=6)
N
* = Y=1 T
Pr(y=0|x=6)
o

probeq brm-1xV3.do js| 2015-01-23
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This is a CDF of the error distribution
See Long(1997) or Long and Freese (2014) for details.

1. For probit with standardized normal errors

Pr(y=1|x)=0(xB)= Iiﬁex{%z]dt
2. For logit with standard logistic errors
exp(xﬁ)
1+exp(xB)
3.Using 1() as shorthand for Pr(y=1])
z(xB)=Pr(y=1|x)=F(xB)

Pr(y=1|x)=A(xB)=
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y* and Pr(y=1|x) for a single regressor
1. The structural equation is:
y' =a+ fx+e where e ~N(0,1)
2.The probability equation is:
Pr(y=1|x)=F(a+ £X)
3.The link between y* and Pr(y=1) leads to an S-shaped curve for Pr(y=1|x)

Next page...
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(X)
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Does the empirical relationship need to be S-shaped?

()
0

00to10 brm-probyV3.do 2015-03-31
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00010 negative brm-probyV3 do 20150331 001625 negative bm-probyV3.do 2015.0-31
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On the support of the data

Where is your data? Where do you want to explore

For average scientists in year seven

Women Pras

Probability of tenure

o - I e ]
T T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50
Number of articles
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Scalar identification of B
1.The true structural model regresses y* on x:
y¥=a+Bx+e
2.Since y* and € are unobserved, we cannot estimate their means or variances.
3.Suppose someone doubled the unobserved y*?
2y* =2a + 2PBx + 2¢
4.Changing notation,
Yy =a+Bx+e
5.The true B and the imposter 3 are empirically indistinguishable
0 We can't interpret the estimated Bs since we don’t know the metric of y*
6. Stretching a graph illustrates this fundamental point:

0 See mcol8-scalar identifcation demonstration 2018-04-03.docx
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Scalar identification in the BRM

1. Identification are critical for understanding the BRM
2.The regression coefficients are not identified; the probabilities are
Arbitrary but necessary identifying assumptions
Assumption 1: Mean of the errors (as with LRM)

E(elx)=0
Assumption 2: Value of threshold

=0
Assumption 3: Variance of the errors

Var (e |x)=1 for probit
Var(e|x)=r?/3  forlogit
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Algebraic illustration of identification assumption 3
1. Consider the structural model for probit:

y'=xB+e  where Var(e|x)=1
2. Multiply both sides by &:

sy’ =x(6B)+de
3.We can’t measure y* or € and do not know B, so the change is unobservable.
4. For convenience, define:

yi=8y  B.=6B & =0
5.Then:

yi=xB +&
6.And:

Var(, | x)= Var(8z | x)=5"Var(¢|x)=5"
7.1f 657[/\/5 , then Var(sl_ | x)=7r2/3 as
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Graphical illustration of identification assumption 3The B's cannot
be interpreted directly since their magnitude reflects:

a. The relationship between the x's and y*.
b. Arbitrary identifying assumptions.
2.Pr(y=1|x) is unaffected by the identifying assumption about Var(e |x).

o o

w w0

° y=11 ° y=11
y=0 | . y=0l

> >

9 ©

o °

0 ©

‘001 2 3 4 5 6 7 8 9 10 ‘o001 2 3 4 5 6 7 8 9 10

x x

s10sdprobit brmscalingV1.do sl 2015.02.00 542054 brm-scalingV1 do s 20150209

3.See mcol8-scalar identification demonstration 2018-04-03.docx
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Comparing logit and probit with Mroz data - #2

Comparing regression coefficients and z-tests

logit |Ifp k5 k618 i.agecat i.wc i.-hc lwg inc, nolog
probit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

| blm | bpm | ratio

1 b z | b z | b z

+ + +

Ifp | | |
k5 | -1.392 -7.182 | -0.840 -7.480 | 1.657 0.960
k618 | -0.066 -0.916 | -0.041 -0.975 | 1.593 0.939
l.wc | 0.798 3.367 | 0.482 3.481 | 1.655 0.967
1.hc | 0.136 0.659 | 0.074 0.596 | 1.841 1.106
lwg | 0.610 3.677 | 0.371 3.894 | 1.644 0.944
inc | -0.035 -3.989 | -0.021 -4.136 | 1.665 0.965
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Comparing predicted probabilities: r=.9998

. estimates restore bilm

= . predict prblm
. label var prblm ///
"Logit: Pr(LFP|X)"
] . estimates restore bpm
> ®
= . predict prbpm
® . label var prbpm 77/
%, “Probit: Pr(LFP|X)"
S o
el
2
°
el
o <4
a
.‘é’)
o
—
ol®

0 2 4 6 .8 1
Probit: predicted probabilty
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Review of scalar identification in logit and probit

1. The magnitude of regression coefficients depends on the scale of the outcome
2.Since y* is latent, we do not know its scale or variance

3.Therefore, the slopes are not identified

4. Estimated B's cannot be directly interpreted since they reflect

0 The relationship between the x's and y*

0 Arbitrary identifying assumption for Var(g|x)
5. Scalar identification does not affect Pr(y=1]x)

0 Probabilities can be interpreted without concern about identification
6. Scalar identification issue has profound implications for:

0 Group comparisons

0 Nested models

0 Mediation effects
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Alternative derivations of the BRM
Nonlinear probability model (see Theil)
1. Transform Pr(y=1]x) to the odds which range from 0 to e
Pr(y=1
Odds(1 versus 0 | x) =(x) :M
Pr(y=0|x)

2.Transform the odds to the logit or log odds which ranges from -oo to o

1{7“(3’:”")},45

Pr(y=0]x)
3.Take the exponential of each side and solve for Pr(y=1|x)
exp( x|
Pr(y=1] x) :7xp( p)
1+exp(xB)
4.0r in terms of odds:

Q(x) :exp(xﬁ) = exp(ﬁn +ﬂlxl Jr:Bzxz +e )
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Random Utility Model (RUM)
1. Two choices where
Choice 0 provides utility ug
Choice 1 provides utility uy;
2.The utility received from a choice is modeled as
Uoi = XiBo + €oi
Usi = XiB1 + €
3.1 chooses 0 if ug; > u1j with Pr(ugi > usi|x)=Pr(0]x)

4.1f € is normal, this is probit; if € is extreme value type 2, logit
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Generalized linear model (GLM)
1.The observed y has a binomial distribution with mean
E(y) =
2.The linear predictor is
n=xB
3.The link function:
logit:  In[n/(1-w)]l=n=xB
probit:  ®*(u) =n=xB
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ML estimation
1.Since we can’t estimate residuals, we can’t use methods like OLS.

2. Maximum likelihood estimation choses the values of the parameters that
makes the observed data more likely than any other values of the parameters

0 Pick paramters that make what you see most likely
3. Probability of what was observed for each observation

_{Pr(yi =1|x,)

T t=Pr(y; =1x;)

ify, =1 is observed

if'y; =0 is observed

4.1f observations are independent, Pr(HH) = Pr(H)*Pr(H). Thus,
N
L(ﬁ ‘ y7X) = Hp|
=1

5.The estimates [3 maximize L(B ly.X)
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Comments on MLE
1.See lecture Estimation, Testing, and Fit for more information
1. ML estimates are asymptotically consistent, normal, and efficient

0 ML estimate are not necessarily bad in small samples, but small sample
behavior is largely unknown

2. Numerical methods search for the maximum using the slope and change in
slope of the likelihood equation
0 Numerical methods for ML estimation work very well "when your model is
appropriate for your data" (Joreskog)
3.Cramer (1986:10) gives excellent advice
Check the data, check their transfer into the computer, check the actual
computations (preferably by repeating at least a sample by a rival program),
and always remain suspicious of the results, regardless of the appeal.
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Parameters, probability curves, and marginal effects
1. Consider the BRM:

7(X)=Pr(y=1|x)=F(a+px)
2. Discrete change DC(x) is the change in Pr as x changes from 1 to 2:

m(X)

0.0

T T 1
0 1 2 3

de brm-me-dcV14.do 2015-06-10

3.The size of DC9x) depends on a and B.
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Changing the slope B

The larger the slope, the smaller the Ax for a given APr(y).

o Note: a=0 for all curves
=

"""" p=0.8
----p=16
© p
N[ ——- p=32
— p=8.0
X B
=gt
Yo}
N
- .
o I
o T T T T 1

Categorical Data Analysis Binary Outcomes | 29




Changing B changes the size of DC(x)

o Note: =0 for both curves

—— p=038
——- p=32
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Changing the intercept a
Smaller a shifts the curve right.

o Note: 3=3.2 for all curves

-
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Changing a changes the size of DC(x)

o _Note: B=3.2 for both curves

—

(x=-3.0
——- 4=-5.0

.00
\
\
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How does the value of x, change DC(x1)?

1.The model:
Pr(y=1|%,%)=F(-4+.6%+.5%,)

2.1f x,=0,
Pr(y=1|%.X,=0)=F(-4+.6x +[.5x0])

=F(-4+.6x)
3.1f x,=5 (curve with circles on next page):
Pr(y=1]x,% =5)=F(-4+.6x +[.5x5])=F([-4+2.5]+.6X)
=F(-1.5+.6%)

4.DC(x1) depends on values of other variable which shift the probability curve.
5. Graphically...
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How x2 changes DC(x1)

7T(X1,X2)
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Interpretation using predictions

1. Probabilities are the fundamental statistic for interpretation
7(x)=Pr(y=1|x)=F(xB)

2.Since model is nonlinear,

No single method of interpretation fully describes the relationship
between a variable and the outcome.
3.The critical decision is deciding at which values of x to examine the predictions.
O This is substantive decision
4.Search for an elegant method that reflects substantive complexities.
0O Try many to find the right one
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Value of regressors for computing Pr(y=1]|x)
1.In-sample predictions use observed values from the sample
2.0ut of sample predictions use any values of the x’s

Key concepts
On the support are values where real data might be found
Counterfactual experiments imagine a variable changes holding others constant

Average could be a counterfactual
0 Who is .53 female?
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Ways to use predictions for interpretation
1. Predictions at observed values
2. Marginal effects

0 Changes in predictions
3.ldeal types or profiles

O Predictions at values of substantive interest
4.Tables

0 Predictions at multiple levels of several regressors
5.Graphs

0 Predictions at many levels of regressors
6.0dds ratios

0 A ratios of ratios of probabilities
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In-sample predictions
1.In-sample predictions use observed xi's
7(x;)=Pr(y; =1|x,)=F (xi[i)
2. Examining these predictions for patterns and suspicious observations

Model: logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
Observed proportion of 1's: 0.568

Logit: predicted probabilty

T
0 10 20 3c 40
Frequency
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Predictions for health outcomes (details later)

Logit predictions for health outcomes

T T T
arthritis diabetes goodhlth
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Code: in sample predictions and plots

Make predictions

estimates restore logitmodel

predict prlogit

label var prlogit "Logit: predicted probability"

Compute mean prediction to add to graph

qui sum prlogit // compute mean to include in graph
local mn = string(r(mean),"%5.3f") // store formatted string

Dotplot/histogram

dotplot prlogit, ///
ylab(0(-2)1, nogrid) ylin(0 1, Icol(blue)) mcol(gsl0) ///
title(Model: logit Ifp k5 .. inc, pos(11)) ///
subtitle("'Observed proportion of 1"s: “mn*", pos(11))
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Marginal effects: changes in probabilities

The change in Pr(y|x) for a change of § in xi, holding other regressors at
specific values.
Decisions when using MEs
1.How much change?
0 An infinitely small change leads to the marginal change (MC).
0 A finite change leads to a discrete change (DC).
2.Where is the change computed?
0 The value of the ME depends on where it is evaluated

3.Since the value depends on where you compute the ME,
how to you summarize the effect of a variable?
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Marginal change and discrete change

7(X)
0.25

0.0

dcVSmc brm-me-dcV13.do 2015-04-08
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Marginal change versus discrete change
| focus on DC but everything can be done with MC.
Marginal change
1.MCis the instantaneous rate of change
0 The speedometer reading

2.1f probability curve is approximately linear, the MC tells you how much the
probability would change for a unit change in x

0 If your speed is constant, the speedometer tells you how far you will go in an
hour
Discrete change
1.DCis the change that occurs over a fixed distance.
2.1 find the DC to be substantively clearer.
3. Unless your field uses MC, DC is more intuitive.
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Discrete change DC(x 1->2)

0.25
L
>

2
x

m(X)

dc brm-me-dcV14.do 2015-06-10

Here's how the DC is computed...
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1. Compute probabilities at start and end values of x
Pr(y =1]|x*Startx,):  Starting probability given x* & start value x.
Pr(y =1|x*Endx,): Ending probability after changing only x«.

2. Discrete change
APr(y=1]|x
¥=Pr(y=l|x*,End X, )—Pr(y =1|x*,Start x, )

Xk
3. Interpretation

Changing x« from start to end changes the probability by DC(x), holding
other variables at the specific values.
4. Example using means:
A Pr( y=1]| x) - _
A7}(k—Pr(y—1|wc—l,x)—Pr(y—l\wc—O,x)

Attending college increases the probability of women being in the labor
force by .19, holding other variables at their means.
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What affects the size of the DC?
1. The regression coefficients as illustrated earlier
2. Start value of x
0 The curve changes more rapidly at some places
3.The amount of change in xk
0 Bigger changes have bigger effects (assuming no polynomials)
4.Value of other regressors and their regression coefficients
0 Effectively, these change the intercept which changes the effect
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Effect of start value on DC(x+1)

0.00
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Effect of other variables on DC(x+1)

1.0

Pr(y=1)
0.5
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Amount of change in x«
1.0 to 1 for binary variables: male compared to female
2. Fixed change
0 Unit change: increase education by 1 year
0 Standard deviation change: increase age by a standard deviation
0 Minimum to maximum: lowest to highest income (or trimmed extremes)
0 Four years of education or $10,000 of income
3.Changes in linked variables: increase age and age-squared

4. Changes in several variables: white males compared to black females
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Summarizing marginal effects

Since the ME depends on the levels of all variables in the model, how do you
summarize the effect with a scalar value?.

Pr(y=1)
0.5
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Common summary measures

Marginal effects at representative values (MER)

0 Look at values that are substantively interesting
0 Or at multiple sets of values (Madalla)

Marginal effects at the mean (MEM)

0 Use the mean as a representative values
0 Is anyone average? Is the mean a good summary?

Average marginal effect (AME)

0 Compute ME for each observation and then average
Which is the best one?

The one that answers your substantive question!
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Discrete change at representative values (DCR)
Think of a specific set of values x* and compute DC(xx|x*)
APr(y=1|x)

AXk

DCR:

Discrete change the mean (DCM)
Hold all variables held at theirs means
APr(y=1|x)

AXk

DCM

Average discrete change (ADC)
Compute the DC at each x; and take the average.
) APr(y=1|x;)

1 N
DC, ~ the ADC=>DC,

ik
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Which measure of change? ADC, DCM, DCR

1. ADC and DCM can be similar, but are not asymptotically equivalent.

2. Traditionally, DCM prevailed since ADC requires N times more computation.
0 Newer software computes both measures.

3. A critique of DCM is that the mean might not correspond to anyone.

a.The DC at the mean of binary x roughly averages the DC for the two
groups.

b. DCR can use modal values of the binary variables, but this ignores
everyone who is in a less well represented group.

c. DCR can be computed for both groups
4. Consider two examples illustrating what DCR and ADC can and cannot tell you
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Positive ADC for nonwhites; zero ADC for whites

=

3
.
®

Pr(Diabetes)
2
1
e

o T T T T T T
50 55 Mnonwhite Man Mwhite 80 85 90
Age
------ Nonwhite ~ —— White
@ Observed B Observed
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Zero ADC for nonwhites; positive ADC for whites

~
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Characteristics of the ADC
1.The ADC replaces one mean with another.
0 Computation at the mean is replaced by the mean of.
0 Means are only one characteristic of a distribution.
2.The ADC might not be close to the effect for anyone in the sample.
0 Suppose effects are small for men and large for women. The ADC does not
indicate this difference.
0 If you are planning an intervention, are you interested in the average effect
or the average for those you want to target (e.g., high risk youth)?
O Later we look at the distribution of effects for all observations
3.The ADC reflects the regression surface and the distribution of values of x’s in
the sample
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Characteristics of the DCR
1. The representative values have to be substantively useful and meaningful.

2.1t reflects the regression surface at a specific location that does not depend on
the distribution of observations

What do you want to know determines the best measure
1.The best measure is the one that addresses the goals of your research

2. What do you want to know?
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Testing marginal effects
1. The delta methods is most often used to computes standard errors.
2.You can test Ho: ME=0 or compute a confidence interval.

0 Is the effect of having another child significant?

3. More test complex hypotheses can be tested if the effects are computed
simultaneously

0 Is effect of age the same for men and women?

Confidence intervals

1. Confidence intervals describe the distribution of estimators over repeated
samples
0 The 95% Cl indicates that we expect our estimate to fall within the CI 95

percent of the time in repeated sampling.

o If the Cl overlaps 0, you cannot reject that hypothesis that ME=0

2.You should not use overlapping Cls to conclude that effects are NOT
significantly different

3. Details in Testing Marginal Effects
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Overview of mchange
. mchange, atmeans

logit: Changes in Pr(y) | Number of obs = 753
Expression: Pr(Ifp), predict(pr)

Change p-value

-0.324 0.000
-0.180 0.000

+1

1

+

K5 1
1

+SD |

Predictions at base value

| not in LF in LF

+
Pr(y|base) | 0.422 0.578

Base values of regressors

| 2. 3. 1. 1.
| k5 k618 agecat agecat wc hc
+

at | .238 1.35 .385 .219 .282 .392
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Code: options - help mchange for more information

Note that output in slides is sometimes edited

amount(one sd): specify amount of change

atmeans: hold regressors at their means

stats(est pvalue Il ul):show estimates, p-value, and Cl
brief: reduce output

dec(#): number of decimal digits

Examples of marginal effects - #4

MEM: marginal effects at the mean

. mchange, atmeans amount(one sd) stats(est p Il ul) dec(2)

logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(Ifp), predict(pr)
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| Change p-value LL uL

K5 1
+1 | -0.32 0.00 -0.40 -0.25
+SD | -0.18 0.00 -0.23 -0.13

k618 |
+1 | -0.02 0.34 -0.05 0.02
+SD | -0.02 0.34 -0.06 0.02

agecat |
40-49 vs 30-39 | -0.15 0.00 -0.24 -0.05
50+ vs 30-39 | -0.31 0.00 -0.42 -0.19
50+ vs 40-49 | -0.16 0.00 -0.26 -0.06

wc |
college vs no | 0.19 0.00 0.09 0.28

hec |
college vs no | 0.03 0.51 -0.06 0.13
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lwg I
+1 | 0.14 0.00 0.08 0.20
+SD | 0.08 0.00 0.05 0.12
inc |
+1 | -0.01 0.00 -0.01 -0.00
+SD | -0.10 0.00 -0.15 -0.05
Base values of regressors
| 2. 3. 1. 1.
| k5 k618 agecat agecat wc hc
+
at | .24 1.4 -39 .22 .28 -39
| Iwg inc
+
at | 1.1 20

1: Estimates with margins option atmeans.
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A unit change: +1

APr(y=1[x") .. .
——— 2 =Pr(y=1|x,x +1)-Pr(y=1|x,X
A (y=11x"x +1)=Pr(y=1]x"%)
1 Change p-value LL uL
K5 1
+1 | -0.32 0.00 -0.40 -0.25

For a woman who is average on all characteristics, an additional young
child decreases the probability of being in the labor force by .32 (p<.01).

Plugging in the specific values, the peculiarity of the mean is clear:

For a woman who is average on all characteristics, increasing from .24 to
1.24 young child decreases the probability of being in the labor force by
.32 (p<.01).
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A standard deviation change: +SD

APr(y=1|x") .. ..
—————2=Pr(y=1[x"x +5,)-Pr(y=1x"x)
AX,
1 Change p-value LL uL
+
+1 ] -0.01 0.00 -0.01 -0.00
+SD | -0.10 0.00 -0.15 -0.05

A standard deviation increases in family income, about $20,000, decreases
the probability of being in the labor force by .10 (p<.01, two-tailed test),
holding other regressors at their means.
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A change from0Oto 1
Since wife’s college was entered 1 .WC, the change is automatically from O to 1.

1 Change p-value LL uL

+

wc 1
college vs no | 0.19 0.00 0.09 0.28

hc 1
college vs no | 0.03 0.51 -0.06 0.13

If an average woman attends college, her probability of being in the labor
force is .19 greater than that of a woman who does not attend college
(p<.01). The effect of the husband attending college is small and not
significant.
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Change from the minimum to the maximum with trimming

1. This is a useful indication of the total possible effect of a variable:

APr(y=1[x") . .
— = =Pr(y=1|x ,max X, |-Pr(y=1|x ,minX
A (v=1 )—Pr(y=1]| o)
. mchange Iwg inc, atmeans amount(range) dec(2) brief
1 Change p-value
+
Twg |
Range | 0.67 0.00
inc ]
Range | -0.65 0.00

2.Option trim()removes extreme values:
. mchange Iwg inc, atmeans amount(range) trim(5) dec(2) brief

| Change p-value

+

lwg I
5% to 95% | 0.27 0.00

inc |
5% to 95% | -0.29 0.00
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AME: average marginal effects
1. Compute the DC for every observation at its observed values:
CAPr(y=1]x)

AX;

ik

DC,

2. Average the individual DCs:

1 N
ADC =—Y'DC,
C N; C,
3. Consider the ADC(wc)
APr(y=1|x,)
= o pr(y=1]x,we=1)-Pr(y=1|x,wc=0
" AwWe(0—1) (y i ) (y 3w )
1 N
ADC =—» DC.
C N; C,
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. mchange k5 wc, amount(one) dec(2) // <= no atmeans
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(Ifp), predict(pr)

| Change p-value
+
K5 |
+1 | -0.28 0.00
we |
college vs no | 0.16 0.00
Average predictions
] not in LF in LF
+
Pr(y|base) | 0.43 0.57

No base values since we average over all cases.
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Comparing AME and MEM (excluding p-values)

1. AME for k5
On average having one more young child decreases the probability of
being in the labor force by .28.

2. MEM for k5
For someone who is average on all characteristics, having an additional
young child is expected to decrease the probability of LFP by .32.

3. AME for wc
On average women who attend college have a probability of being in the
labor force that is .16 greater than those who do not attend college.
The average impact of a women attending college is to increase her
probability of LFP by.16.

4. MEM for wc
If an average woman attends college, her probability of being in the labor
force is .19 greater than that of an average woman who does not attend
college.
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MEM vs AME
1. MEM and AME answer different questions.

2.The AME is probably the best replacement for regression coefficients in the
LRM.

0 When comparing groups this is NOT necessarily the case
3.1f MEM and AME differ, figure out what it tells you about the process.

| AME | MEM |
| Change | Change | AME-MEM
+ + +

k5 +SD | -0.153 | -0.180 | 0.027

k618 +SD | -0.018 | -0.021 | 0.003
+ + +

wc college vs | 0.162 | 0.186 | -0.024
+ + +

inc +SD | -0.086 | -0.101 | 0.016
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Distribution of effects

On average if a woman attends college her probability of labor force

participation increase by .162.
1. Averages do not indicate variation in the sample.

0 The effect of college might be different for different people
2.This suggests looking at the distribution DC’s for each observation:
DC - APr(y=1|x;)
AXik

Histogram of effects for wc #1
3.Usingmargins, generate() create variable DCwcl with DC(wc)
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margins, dydx(wc) generate(DCwc)

Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(Ifp), predict(Q
dy/dx w.r.t. : 1l.wc
| Delta-method
| dy/dx  Std. Err. z P>|z]| [95% Conf. Interval]
+
we |
college | .1624037 .0440211 3.69 0.000 .076124 .2486834

Note: dy/dx for factor levels is the discrete change from the base level.

. codebook DCwc*, compact

Variable Unique Mean Min Max Label
DCwcl 1 0 0 0 margins generate variabl...
DCwc2 753 .1624037 .0074083 .1968259 margins generate variabl...

4.The variable dcwc2 had the effects for each case.
5. Plotting the results...
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Distribution of DC for wife attending college for wc

o ]
®
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I
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S 7 T T T t t T
0 .05 A A5AME  MEM .2
DC for wife attending college
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Code for plotting the distribution of effects

margins, dydx(wc) // AME
local adc = el(r(b),1,2) // add ADC(wc) to local

margins, dydx(wc) atmeans // MEM
local dcm = el(r(b),1,2) // add DCM(wc) to local

histogram DCwc2, xlab(0(-05).20) ylab(0(10)30, grid) ///
percent bin(25) color(gs10) fcolor(gsl2) ///
/// add labels for ADC and DCM
text(-1.5 “adc® "ADC", color(red*.8) placement(center)) ///
text(-1.5 “dcm® "'DCM", color(blue*.8) placement(center)) ///
text( O “adc” | , color(red*.8) placement(center)) ///
text( O “dem® |, color(blue*.8) placement(center))
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Effects of BMI on diabetes - #2
1. The example uses a model predicting diabetes from a later chapter.
2.BMI affects diabetes

. sum bmi

Variable | Obs Mean
+
bmi | 16,221

3.The ADC(bmi+5) is:
. mchange bmi, amount(sd) delta(5) decimal(8)

Std. Dev. Min Max

27.80409 5.796451 10.57755 82.6728

svy logit: Changes in Pr(y) | Number of obs = 16221
Expression: Pr(diabetes), predict(pr)

Change p-value

bmi

— —

+delta | 0.08005615 0.00e+00

1: Delta equals 5.
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Distribution of DC(bmi+sd)

Percent

T T T T T 1
0 .02 .04 .06 .08 1 12 14

Discrete change for BMI + 5
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Distribution of DC(bmi+sd) by race

To show how affects vary by race

o ‘:] White [ Black‘
N
[Tol|
-
c
@
<
GJO*
=
Lol -
o J\d_ﬂ f T T T T 1
0 .02 .04 .06 .08 N A2 14

Discrete change for BMI + 5
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Computing DC(bmi+sd)

1. The effects for each observation cannot be created with dydx () which
computes MCs or DCs for i . variables

2.1 crate predicted probabilities at the observed BMI and observed + 5:
. margins, at(bmi=gen(bmi)) at( bmi=gen(bmi+5)) gen(PRbmi)

Predictive margins Number of obs = 16,221
Subpop. no. obs = 15,677
Model VCE : Linearized
Expression : Pr(diabetes), predict(Q)
1._at : bmi = bmi
2._at : bmi = bmi+5
| Delta-method
| Margin Std. Err. t P>|t] [95% Conf. Interval]
+
_at |
1] .1793669  .0035909 49.95 0.000 .1721734 .1865604
2 | .259423 .00647 40.10 0.000 .2464621 .2723839
. codebook PRbmi*, compact
Variable Unique Mean Min Max Label
PRbmi1l 14798 .1984852 .013618 .980003 margins generate varia...
PRbmi2 14798 .2837495 .0227459 .9880413 margins generate varia...
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3. Next, create the ADC for each observation:

. gen double DCbmi = PRbmi2 - PRbmil

. lab var DCbmi "DC for increase of 5 in bmi"

4.To test if my computations are right, take the average which matches the
results from mchange

. svy: mean DCbmi // verify this equals adc from mchange
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 56 Number of obs = 16,248
Number of PSUs = 112 Population size = 70,963,962
Design df = 56

Mean Std. Err. [95% Conf. Interval]

DCbmi

|
+
| -0800561 .0004647 -0791253 .080987

. gen double DCbmi = PRbmi2 - PRbmil
. lab var DCbmi "DC for increase of 5 in bmi"
. svy: mean DCbmi // ADC to verify

Linearized

Mean  Std. Err. [95% Conf. Interval]

|
I
+
DCbmi | -0800561 .0004647 -0791253 .080987
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Code for plotting dual histograms

twoway ///
(hist DCbmi if race == 1, percent fcol(none) bcol(red*.8)) ///
(hist DCbmi if race == 2, percent fcol(none) bcol(blue*.8)), ///
x1ab(0(.02).14) xtitle(''Discrete change for BMI + 5") ///
legend(symxsize(7) order(1l "White" 2 "Black™) pos(12) ring(0)) ///
scale(1.1) plotregion(margin(zero) lcol(white))
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Summary of marginal effects
1. A summary measure of the effect of a variable is often useful.

2.1n LRM, the regression coefficients are used as long as nonlinearities (e.g.,
powers) are not included.

0 The By is DC(x) in this case

3.In BRM, regression coefficients are rarely the effect of interest.
0 OR's are used, but are limited as discussed below.

4.Change in the probability is the best way to summarize effects.

0 ADC and DCM are often close, but ADC is preferred as a single measure in
most cases.

0 Multiple DCR's might be the best approach.
5.But:

Summary measures are only summaries!

6.Remember, the model is nonlinear....
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Predictions for ideal types or profiles - #6

1. What types of people are you interested in? Are there interesting clusters of
characteristics that occur together?

2. Defining profiles makes you to think about where to look in the data

3. Comparing predictions across profiles helps you understand your data and the
effects of variables

4. We will compute these types and later test if they have the same Pr(LFP)

| Pry) 1 ul

—_———— + —_—
Average person | 0.578 0.539 0.616
Younger lower educ w kids | 0.159 0.068 0.251
Young more educ w kids | 0.394 0.234 0.554
Middle age higher educ w kids | 0.754 0.681 0.828
Older w higher educ | 0.631 0.528 0.734
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An "average person"
1.mtable options
0 atmeans to hold variables at their means.
0 ci toinclude Cl for predictions instead of p-value
o clear to start a new table
o rowname () to label the results

2. Make the predictions
. mtable, rowname(Average person) atmeans ci clear
Expression: Pr(Ifp), predict()

1 Pr(y) 1 ul
Average person | 0.578 0.539 0.616
Specified values of covariates
2. 3. 1. 1.
| k5 k618 agecat agecat wc hec
Current | .238 1.35 .385 .219 .282 .392
! .
| Iwg inc
Current | 1.1 20.1
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Confidence intervals
1.1t usually is not interesting to test if a probability is 0.

2.Instead, confidence intervals are use to demonstrate the precision of the
estimate.

3.For example,

The predicted probability of labor force participation for an average
person is .58 with a 95% confidence interval from .54 to .62.

The estimated probability of labor force participation is .58 (95%Cl: .54,
.62).

Our results suggest that the predicted probability of labor force
participation could be as small as .54 or as large as .62 with 95 percent
confidence.
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Young, lower class, less educated mom

1. We specify all values with at():
* note: in 1975 $2.10 is min wage; .75 for lwg

. mtable, rowname(Younger lower educ w kids) ///
> at(agecat=1 k5=2 k618=0 inc=10 Iwg=.75 hc=0 wc=0) below ci twidth(28)

Expression: Pr(Ifp), predict(Q)

1 Pr(y) 1 ul
+
Average person | 0.578 0.539 0.616
Younger lower educ w Kkids | 0.159 0.068 0.251
Specified values of covariates
| 2. 3. 1. 1.
| k5 k618 agecat agecat wc hc
+
Set 1 | .238 1.35 .385 .219 .282 .392
Current | 2 0
|
| Iwg inc agecat wc hc
+
Set 1 | 1.1 20.1 B . .
Current | .75 10 1 0 0
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Young, more educated moms
1. Profile is defined as:
agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
2. Where should | hold Iwg and inc?
0 Global means for the entire sample are too large.
0 Local means based on individuals who meet our profile are better.

3. Computing local means and saving them:

sum lwg if agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
local mnlwg = r(mean)

sum inc if agecat==1 & k5==2 & k618==0 & wc==1 & hc==1
local mninc = r(mean)

4. Making the predictions

. mtable, at(agecat==1 k5==2 k618==0 wc==1 hc==1 inc="mninc" lwg="mnlwg") ///
> rowname(Young more educ w kids) atmeans below ci twidth(28)
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Middle aged, educated dad with kids

sum inc if agecat==2 & k5==0 & wc==1 & hc==1
local mninc = r(mean)

sum lwg if agecat==2 & k5==0 & wc==1 & hc==1
local mnlwg = r(mean)

sum k618 if agecat==2 & k5==0 & wc==1 & hc==1
local mnlk618 = r(mean)

mtable, at(agecat==2 k5==0 k618="mnlk618" ///
wc==1 hc==1 inc="mninc* lwg="mnlwg") ///
rowname(Midage higher educ w kids) atmeans ci below twidth(28)

More educated older couples

sum inc if agecat==3 & wc==1 & hc==1 & k618==0 & k5==0
local mninc = r(mean)

sum lwg if agecat==3 & wc==1 & hc==1 & k618==0 & k5==0
local mnlwg = r(mean)

mtable , at(agecat==3 k5==0 k618==0 wc==1 hc==1 inc="mninc" lwg="mnlwg") ///
rowname(Older w higher educ) atmeans ci below twidth(28)
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Summary of ideal types
Expression: Pr(Ifp), predict(Q)

1 Pr(y) 1 ul

+
Average person | 0.578 0.539 0.616
Younger lower educ w Kids | 0.159 0.068 0.251
Young more educ w kids | 0.394 0.234 0.554
Middle age higher educ w kids | 0.754 0.681 0.828
Older w higher educ | 0.631 0.528 0.734

Specified values of covariates

1. Which variables seem most important?

2.1n our commands for ideal types, we could add the option statistics(ci)
to add confidence intervals to the table.

3. Later we consider testing if predictions are equal, such as:

Older women with higher education have significantly lower chances of
being in the labor force than more educated middle aged with children.
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Tables of predicted probabilities - #7

1. The ideal types suggest young children and wife's education are important

2. Predictions across categories of children and education summarize the effects
Number Did Not

of Young Attend Attended
Children College College Difference
0 .60 e .17
1 .28 .46 .18
2 .09 .17 .09 < due to rounding
3

.02 .05 .03

3. Where do these numbers come from?
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Curves behind the table of probabilities
1. Let © be the linear combination of all variables except k5 and wc.

2.The model is
Pr(y=1[x)=A(f, + fsk5+ B, Wc+O)

= A(f + BeskS + B, we)
3.1fwec=0
Pr(y=1x,wc=0)=A(/ +/Ak5)
4.1fwe=1

Pr(y=1|x,wc=1)=A(S +Bk5+p,)
A5+ Buc J+ Biks)
=A(B) +Bisks)
5.These are parallel curves as shown on the next page.
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# Young Not Attended

Children College College Difference
0 .60 .77 .17
1 .28 .46 .18
2 .09 .17 .09
3 .02 .05 .03

Pr( In Labor Force )

T
-4 -3 -2 -1 0 1 2 3 4
Number of Children

Attended College ~ ————- Did Not Attend College
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Quick table for predictions by levels of two variables
. mtable, atmeans at(wc=(0 1) k5=(0 1 2 3))

Expression: Pr(Ifp), predict()

| k5 we Pr(y)

+
1] 0 0 0.604
2] 0 1 0.772
3] 1 0 0.275
4 ] 1 1 0.457
51 2 o] 0.086
6 | 2 1 0.173
71 3 0 0.023
8 1 3 1 0.049

Specified values of covariates

| 2. 3. 1.
| k618 agecat agecat hc Twg inc
+

Current | 1.35 .385 .219 .392 1.1 20.1
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Local and global means - #7.3
1. We held other variables at the global means

0 Do college educated women without children have the same levels of
income and wages and those without college and 3 young children?

2.Local means hold variables at levels local to other variables being examined
held constant

0 For example, the mean age for those with 3 young children
3. Predictions with local means are computed with i f and atmeans
a. Create a selection variable that defines the group of interest.
b.Use 1T with mtable to select these cases.
c. The, atmeans compute means within the 1 F group.
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Local means for tables using if

1.Select cases I k5==0 and use atmeans
. mtable if k5==0, atmeans estname(k5_0) at(wc=(0 1) k5=0) atvars(l.wc)

1.
we k5 0
0 0.583 <= prediction for k5==0 and wc==0
1 0.757 <= prediction for k5==0 and wc==1
2. 3. 1.
k5 k618 agecat agecat hc Twg inc
0.000 1.279 0.436 0.269 0.358 1.107 19.987
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2.Adding predictions for k5=1
. mtable if k5==1, atmeans estname(k5_1) at(wc=(0 1) k5=1) atvars(_none) ///
> right

0 right places new results to the right of the current results

0 atvars(_none) means don’t add atvars to table

3.Adding predictions for k5=2 and k5=3.

. mtable if k5==2, atmeans estname(k5_2) at(wc=(0 1) k5=2) atvars(_none) ///
> right
. mtable if k5==3, atmeans estname(k5_3) at(wc=(0 1) k5=3) atvars(_none) ///
> right

1.

we k5 0 k5 1 k5 2 k5 3
0 0.583 0.337 0.154 0.017
1 0.757 0.530 0.288 0.037

4. Next, compute the DC(wc|k5=j)
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DC(wc|k5=j) using local means
1.dydx(var) tells computes marginal effects for var.

o Ifvaris a i .var, it computes DC; else MC

mtable if k5==0, atmeans dydx(wc) stat(est p) clear long ///
rowegnm(DCwc) coleqnm(k5_0)

mtable if k5==1, atmeans dydx(wc) stat(est p) right long colegqnm(k5_1)

mtable if k5==2, atmeans dydx(wc) stat(est p) right long coleqnm(k5_2)

mtable if k5==3, atmeans dydx(wc) stat(est p) right long coleqnm(k5_3)

2.Results
Expression: Pr(Ifp), predict()

| k5_0 k5_1 k5 2 k5_3
| dPr(y) dPr(y) dPr(y) dPr(y)

DCwc |
d Pr(y) | 0.173 0.193 0.134 0.020
p 1 0.000 0.000 0.003 0.070

Specified values of covariates

3. The differences decrease with number of children and are not significant with
three young children.
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Sensitivity review for global and local means
1. Did using local means change the conclusions?
O Trends are similar.
0 Biggest differences are for one and two children.

| wc=0 we=1 Change pvalue
+ e e e e e e e e e e e e e e e e e o e e o e e e e
global |
k5=0 | 0.60 0.77 0.17 0.00
k5=1 | 0.27 0.46 0.18 0.00
k5=2 | 0.09 0.17 0.09 0.01
k5=3 | 0.02 0.05 0.03 0.09
+ o
local |
k5=0 | 0.58 0.76 0.17 0.00
k5=1 | 0.34 0.53 0.19 0.00
k5=2 | 0.15 0.29 0.13 0.00
k5=3 | 0.02 0.04 0.02 0.07

2.Substantively, | would draw the same conclusions

0 Which predictions would you use?
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Table of predictions
1. Tables can be very effective to show results for a few categorical variables
2. While graphs can be used for continuous variables, tables often work better
0 They are more compact
0 They are easier to see the specific result

3.The mtable command is a wrapper for margins to make predictions easier to
read.

0 In the sample do-file, add detai I's to the mtable commands to see the
output from margins!

0 A few mtable tricks follow

0 See Long and Freese for detailed explanations
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* Local means for tables using over()

1.The over (overvars) option loops through the overvars

0 For each value of overvars it runs mtable or margins on observations
that equal that value

2.The command
mtable, over(k5) at(wc=(0 1)) atmeans

Is equivalent to:
mtable if k5==0, at(wc=(0 1)) atmeans
mtable if k5==1, at(wc=(0 1)) atmeans
mtable if k5==2, at(wc=(0 1)) atmeans
mtable if k5==3, at(wc=(0 1)) atmeans

3.Using over () is quick but the output isn't pretty
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. mtable, estname(k5_0) at(wc=(0 1)) atvars(l.wc k5) atmeans over(k5)

Expression: Pr(Ifp), predict()

| 1.

| we K5 K5_0
0.k5#c.1 | 0 0 0.583
1.k5#c.1 | 0 1 0.337
2.ks#c.1 | 0 2 0.154
3.k5#c.1 | 0 3 0.017
0.k5#c.2 | 1 0 0.757
1.k5#c.2 | 1 1 0.530
2.k5#c.2 | 1 2 0.288
3.k5#C.2 | 1 3 0.037

Specified values where .n indicates no values specified with at()
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* Creating a nicer table

1.mtabl e stacks predictions from previous mtabl e results.
2.clear creates a new table dropping any prior results
3.right place estimates to the right.

4.atvars(_none) adds no new atvars to the table.

5.dydx(wc) requests a discrete change in wc.

. qui mtable, atmeans at(wc=(0) k5=(0 1 2 3)) atvars(k5) ///

> clear estname(NoCol)

. qui mtable, atmeans at(wc=(1) k5=(0 1 2 3)) atvars(_none) ///
> right estname(College)

. mtable, atmeans dydx(wc) at(k5=(0 1 2 3)) atvars(_none) ///

> right estname(Diff) stats(est p)
1 k5 NoCol College Diff p
1] 0 0.604 0.772 0.168 0.000
2] 1 0.275 0.457 0.182 0.001
3] 2 0.086 0.173 0.087 0.013
4 | 3 0.023 0.049 0.027 0.085
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Plotting predictions

1. For continuous variables, graphs can be effective

2.Non-parametric plots such as lowess let’s you assess your functional form

3. Plots of predictions from your model can quickly summarize relationships
0 Multiple predictions can be included in one graph

4.Sometimes the graph shows you that you don’t need the graph

5. Examples of plots
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Examples of graphs we will create

Lowess smoother

Model including only income

75

5

Smoothed mean LFP

2

Lahor Force)'

Pr{in
25

75

5

Family income excluding wife's
bandwidth = 5

Other variables at their means

Other

] 20 40 60 80 100
Family income excluding wife's

variables at their means

- Attended college
Did ot attend
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Pr(in Labor Force)
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0

=1) - Pr(LFPIWC=0)
1 2 3 4

Pr{LFPIWC:
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Family Income Excluding Wife
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Overview of plotting predictions
1.To get graphs to look the way you want is not fun
o marginsplotis a great way to get quick plots
You can customize it like any graph command
It is difficult to combine results from multiple predictions
0 mgen creates variables with predictions to plot with graph
2. Creating graphs is irritating!
0 Use templates rather than starting from scratch
0 Use Stata’s menu system to find options
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Tools for making graphs

1. Graphs have thousands of irritating options to make them look just right

2. Getting your graphs right is important

3.You also want them to be uniform

Locals for graph options

1. Create locals with options:

local ylab "0(.25)1., grid gmin gmax"
2.Then “ylab® means0(.25)1., grid gmin gmax
3. All graph commands can use ylabel (Cylab?)

Graph formats so graph print properly

1. Use EMF, EPS or PDF formats so your graphs scale

Graph captions so you know where it came from

local graphname Ifp-incXwc-mplt
marginsplot, .. ///

caption(*"~graphname® “tag™", size(*.5) pos(5) col(gsl0)) scale(l.1)

Categorical Data Analysis
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Lowess plots - #9

1.1s the relationship between income and LFP substantively reasonable?

Income is the only regressor

75

5

Pr(In Labor Force)

25

Intuition behind a lowess plot

1. Compute mean LFP within income intervals of 5:

. sum Ifp if inc>=0 & inc<5

T T T T T T
0 20 40 60 80 100
Family Income Excluding Wife

2.A lowess plot is non-parametric and does not constrain the shape of the
relationship between a regressor and the outcome

3.Alowess is a first step in evaluating how a regressor is related to the outcome.
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Variable | Obs Mean Std. Dev. Min Max
Ifp | 12 .6666667 .492366 0 1
. sum Ifp if inc>=35 & inc<40
Variable | Obs Mean Std. Dev. Min Max
Ifp | 18 .3888889 .5016313 0 1
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2. Plotting the means by income

Average LFP in $5,000 income interval

Mean LFP
5
*
*
*
*

0 20 40 60 80 100
Income
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The lowess command
1. Alowess plot is a sophisticated way to do this that uses “sliding” intervals.
2.Simple running lowess Ifp incis often enough

Lowess smoother
m—— ® ©

- ® ss0e o o
1

) P
Family income exclucing wife's
bancuidtn= &

3. Options perfect the graph

sort inc

lowess Ifp inc, jitter(3) generate(lowesslfp) bwidth(.5) ///
msym(oh) lineopt(lcol(blue) lwid(*1.3)) ///
x1ab(0(20)100) ytitle(Smoothed mean LFP) ///
ylab(0(.25)1., grid gmin gmax) yline(0 1, lIcol(gsl13)) ///

4.gen(lowessITp) saves the predictions to a variable.

Graph on next page...
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Lowess smoother
= 1 RO O @ o o © °

Smoothed mean LFP
¥
AY
]
!

o 4 o lRESRIR WD P ® © o oo o O
T T

T T
0 20 40 60 80 100
Family income excluding wife's

bandwidth = .5

5.How would this compare to the predictions from logit?
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Predictions from logit
1.To assess the logit model, compare lowess to logit predictions

2.1 am satisfied that my logit is a reasonable in how income is related to LFP

Model including only income

Pr(In Labor Force)'

T
0 20 40 60 80 100
Family income excluding wife's
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Combining logit predictions with lowess

1. Fit the logit model
logit Ifp inc

Or we could fit
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc

2.mgen computes predictions and saves predictions as variables:

3. Predict outcome as income increases from 0 to 100 by 5:
. mgen, at(inc=(0(5)100)) atmeans stub(PLT) predlabel(Logit prediction)

Predictions from: margins, at(inc=(0(5)100)) atmeans predict(pr)

Variable Obs Unique Mean Min Max Label

PLTpri1 21 21 .4223433 .2008354 .6669906 Logit prediction

PLTII1 21 21 .320794 .0336831 .6007513 95% lower

PLTull 21 21 .5238926 .3679877 .7332299 95% upper limit

PLTinc 21 21 50 0 100 Family income excluding

label var PLTpr “Logit prediction”

Categorical Data Analysis Binary Outcomes | 112

4.Variables beginning with PLT are created by mgen:

. format %9.3g Ifp inc PLTpr PLTII PLTul PLTinc
list Ifp inc PLTpr PLTII PLTul PLTinc in 1/25, clean nolabel

Observed

Variables mgen variables

I1fp inc PLTpri1 PLTIIL PLTull PLTinc
1. 1 -.029 .667 .601 .733 0
2. 1 1.2 .644 .588 .699 5
3. 0 1.5 .619 .573 .666 10
4. 1 2.13 .595 .556 .633 15
5. 1 2.2 .569 .534 .605 20
15. 1 5 -319 .176 .462 70
16. 1 5.12 .297 .146 .448 75
17. 1 5.12 .276 .119 .433 80
18. 1 5.32 .255 .0938 .417 85
19. 0 5.33 .236 .0714 .401 90
20. 1 5.49 .218 .0514 .385 95
21. 0 5.55 .201 .0337 .368 100
22. 0 6 . . - -
23. 0 6
24. 1 6.02
25. 1 6.25

Categorical Data Analysis Binary Outcomes | 113




5.Combine the variables created by mgen and lowess

local linPRopt “msym(i) lcol(green) lIpat(solid)"”
local linLOWopt “msym(i) lIcol(blue) Ipat(dash)"

graph twoway ///
(rarea PLTul PLTII PLTinc, color(black*.1)) /// shaded Cl
(connected PLTpr PLTinc, ~linPRopt®) /// line for prob
(connected lowesslfp inc, ~linLOWopt®), ///
subtitle("Model including only income", position(11)) ///
ytitle("Pr(In Labor Force)"") ylab(0(.25)1., grid gmin gmax) ///
xtitle(Family income excluding wife"s"™) legend(off)
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Plot income in full model using marginsplot
1. Consider the full model
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc

2.Compute predictions holding other variables at their means:
. margins, at(inc=(0(5)100)) atmeans

Adjusted predictions Number of obs = 753

Expression : Pr(Ifp), predict(Q

1._at : k5 .2377158 (mean)
1.353254 (mean)
.3957503 (mean)
.3851262 (mean)
.2191235 (mean)
.7184595 (mean)

=R OROWN
=
I3}
W

wc .2815405 (mean)

hc .6082337 (mean)

hc .3917663 (mean)
wg 1.097115 (mean)
inc 0
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21._at : k5 = .2377158 (mean)
k618 = 1.353254 (mean)
1.agecat = .3957503 (mean)
2.agecat = .3851262 (mean)
3.agecat = .2191235 (mean)
0.wc = .7184595 (mean)
1.wc = .2815405 (mean)
0.hc = .6082337 (mean)
1.hc = .3917663 (mean)
Iwg = 1.097115 (mean)
inc = 100
| Delta-method
| Margin Std. Err. z P>|z]| [95% Conf. Interval]
+
_at |
1 ] .7349035 .0361031 20.36 0.000 .6641427 .8056643
21 | .0768617 .0472071 1.63 0.103 -.0156624 .1693858
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3.All that is needed to plot predictions are the commands:
margins, at(inc=(0(5)100)) atmeans
marginsplot

Adjusted Predictions with 95% Cls

T T T T T T T T T T T T T T T T T T T
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Family income excluding wife's
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Customizing marginsplot

local labYopt "labsiz(*1.1) glwid(*.7) glcol(black*.3) grid gmin gmax™
local labXopt "labsiz(*1.1) glwid(*.7) glcol(black*.3) nogrid”

local titleopt "ring(2) pos(1l) size(*1)"

lTocal linlopt “lcol(blue*1.) Ipat(solid) msym(i) msiz(*1.) mcol(blue*1.)"

marginsplot, recastci(rarea) ciopts(color(black*.1)) /7//
ylab(0(.25)1, ~labYopt®™) xl1ab(0(20)100, ~labXopt®) ///
plotlopts( linlopt™) plotopts(lwidth(*1)) ///
xtitle("Family Income Excluding Wife'™) ytitle(""Pr(In Labor Force)™) ///
title("Other variables at their means™ ™ ", “titleopt™)

Other variables at their means

5 75
| I

Pr(In Labor Force)

.25
|

T
0 80 100
Faimily income Excluding Wife
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Plotting predictions for multiple variables

7r(x1,x2)
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Predictions for income by wife’s college - #10.3

Other variables at their means Other variables at their means

- <
77777 Attended college

=0)

Did not attend

75

5
1) - Pr(LFP|WC

Pr(In Labor Force)

25

/\

T T T T T
20 40 60 80 100
Family Income Excluding Wife

PIWC
1
L

Pr(U
0
!

o

T T T
0 20 40 60 80 100
Family Income Excluding Wife

The probability of a woman being in the labor force decreases as family
grows. For incomes, women who attend college are significantly more
likely to be in the labor force, although the difference decreases at higher
incomes.
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Plotting predictions at two levels of wc

1. Let x* be the fixed values for all variable except age and wc.
2.Compute Pr(y=1|x",WC =0, INC) and Pr(y =1|x",WC =1, INC)
margins, at(inc=(0(5)100) wc=(0 1)) atmeans

3.marginsplotis smart enough to know you want two curves. And quickly
gives you enough information to know if you want to use the graph:

Adjusted Predictions with 95% Cls

113t

e A S S A
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Family income excluding wife's

4.1 can add the noci option to suppress the Cls.
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Perfecting the marginsplot

1. Or we make a presentation quality graph

marginsplot, recastci(rarea) ///

cilopts(color(black*.2)) ci2opts(color(black*.1)) ///

plotlopts( linlopt®) plot2opts( lin2opt®) ///

plotopts(lwidth(*1.2))

ylab(0(-.25)1, ~labYopt®) xlab(0(20)100, ~labXopt®) ///

xtitle("Family Income Excluding Wife™) ///

ytitle("Pr(In Labor Force)™) ///

title("'Other variables at their means™ " ", “titleopt®™) ///

legend(order(4 "Attended college” 3 "Did not attend"™) ///
ring(0) pos(l) rows(2)) ///
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DC(wc|inc): are the curves significantly different
1. Do women who go to college have higher rates of LFP for all levels of income?

0 20 40 6‘0 80 100
Family Income Excluding Wife
2.The figure shows two curves with their Cls.
0 If the Cl's do not overlap, predictions are significantly different.

o If the Cl's overlap, significance is unknown
3. We need to test if the predictions are significantly different
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Testing differences in predictions

1. We want to test
Ho: DC(wc|inc) =0
2.We compute
[ Lower bound DC(wc|inc), Upper bound DC(wc|inc) ]

3.Since wC is entered into the model as I .wc, margins, dydx(wc)
computes DC(wc).
margins, dydx(wc) at(inc=(0(5)100)) atmeans

local graphname Ifp-incDCwc-mplt
marginsplot, recastci(rarea) ciopts(color(black*.1)) ///
ylab(0(-1).4, “labYopt™) xlab(0(20)100, ~labXopt®) ///
plotlopts(" 1inDCopt™) plotopts(lwid(*1)) ///
xtitle("Family Income Excluding Wife™) ///
ytitle("Pr(LFP|WC=1) - Pr(LFP|WC=0)") ///
title("Other variables at their means™ " ", “titleopt™) ///
caption('“graphname” “tag™", size(*.5) pos(5) col(gs10)) scale(1.1)
. mgen, dydx(wc) at(inc=Cinc_rng")) atmeans stub(PLTdc) ///
> predlabel (DC of wc by income)
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Comparing overlapping Cl's to tests of DC

0)

77777 Attended college
Did not attend

1) - Pr(LFP|WC

Pr(LFPIWC=
1
!

T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Family Income Excluding Wife Family Income Excluding Wife

Clearly, overlapping confidence intervals can be misleading
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The effect of income on LFP by age category

Regressors: kb k618 age wc hc lwg inc

5 75

Pr(In Labor Force)

25

0 20 40 60 80 100
Family income excluding wife's
—O— Age 30-39 —-E—- Age 4049
e Age 50+
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Graphs for discovery versus presentation
1.You need a graph to decide if you need a graph.

o If a graph is simple, you probably don’t need it in a paper,
but you need the graph to know you don’t need it.

2.You need tools to create graphs quickly and must organize them efficiently or
you won’t do it.

0 Use templates to speed up the process of making graphs
0 Use a file viewer to quickly examine graphs
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Interpretation using odds ratios - #12

1. 0dds ratios are a common and unsatisfactory method of interpretation.

2.Do you really want a ratio of ratios?

Buying apples or pears
1. Are pears at $.40 enough cheaper to buy instead of $.45 apples?

=($.45) / ($1-5.45)
=($.40) / (51-5.40)

Cost index for apples: .818
Cost index for pears:  .667

Cost index ratio: 1.23 =($.45/(51-5.45)) / (5.4/(51-5.4))
Cost difference: $0.05 =8$.45-5.40
Cost ratio: 1.120 =$.45/S.40

2. Which would you use to decide if you want apples?
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What is an odds ratio?
Probability and odds at x and x+1

Probability: Pr(y=1]x) Pr(y=1|x+1)
Pr(y=1 Pr(y=1|x+1
0dds: Q(x):M Q(x+1)zw
Pr(y=0]x) Pr(y=0|x+1)
The OR is a ratio of ratios of probabilities
. Q(x+1)
0Odds ratios: OR(X = X+1)=——+2
Q(x)

For a unit increase in x, the odds increase by a factor of OR(x) holding
other variables constant.

Categorical Data Analysis Binary Outcomes | 129

Logit is linear in the log of the odds
1. A logit is the name for the log of the odds
2.The logit model is linear in the logit
Pr(y=1|x)
In| —————— [=1InQ(x)=xB =L, + B X + L, X, + X
|:1_Pr(y_llx) ( ) B ﬂO ﬂl 1 ﬂz 2 ﬂ} 3
For a unit change in xi, the logit is expected to change by By, holding other
variables constant.
3. Linearity is fine, but what does a change of By logits mean?

Each additional young child decreases the logit of being in the labor force
by 1.39, holding other variables constant.

4.To understand the change in logit, we transform it to odds

Categorical Data Analysis Binary Outcomes | 130

Change logit to odds and compute odds ratio (ORs)
1. Take the exponential of the logit with a focus on x:
Q(x)= exp[an(x)] =exp(xB)
= X e
=efheMef e =Q(x,x,)
2.Let x3 change by 1
Q(x,x, +1) =eeehne/
— phgfMghxghhgh
3.The odds ratio
EndingQ _Q(x.x +1) _efeMeee/te” o
Starting Q. Q(x,X,) ghefmghte/

y

4.The OR does not depend on the level of other variables
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A change of 1 in x has the same OR everywhere Logit estimates
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
Ifp | Coef. Std. Err. z P>]z| [95% Conf. Interval]
+
o ks | -1.391567  .1919279  -7.25 0.000  -1.767739 -1.015395
I k618 | -.0656678 .068314  -0.96 0.336  -.1995607 0682251
> |
T agecat |
o | -.6267601 .208723  -3.00 0.003 -1.03585  -.2176705
3 | -1.279078 .2597827  -4.92 0.000  -1.788242  -.7699128
|
l.wec | .7977136  .2291814 3.48  0.001 3485263 1.246901
1.hc | .1358895  .2054464 0.66  0.508 -.266778 5385569
Iwg | .6099096  .1507975 4.04  0.000 314352 9054672
inc | -.0350542 .0082718  -4.24 0.000  -.0512666 -.0188418
_cons | 1.013999  .2860488 3.54  0.000 4533539  1.574645
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ORs with listcoef: interpretation on next page Odds ratio: factor change in the odds
- listcoef, constant help 1. For a unit change in x the odds are expected to change by a factor of exp(Bx),
logit (N=753): Factor Change in Odds holding other variables constant.
Odds of: 1InLF vs ONotlInLF For exp(Bk)>1, the odds are exp(B«) times larger.
By attending college her odds of LFP are 2.22 times larger, holding other
1p | b z P>|z| erb  enbStdX SDofX
+ variables constant.
K5 | -1.39157 -7.250 0.000 0.2487  0.4823 0.5240 .
k618 | -0.06567 -0.961 0.336 0.9364 0.9170 1.3199 For exp(Bk)<1, the odds are exp(Bk) times smaller
2.agecat | -0.62676 -3.003 0.003 0.5343 0.7370 0.4869 o ) .
3.agecat | -1.27908 -4.924 0.000 0.2783 0.5889 0.4139 For each additional young child, the odds of LFP are .25 times smaller, ...
l.wc | 0.79771  3.481 0.001 2.2205 1.4319 0.4500
l.hc | 0.13589  0.661 0.508 1.1456  1.0686 0.4885 2. For a standard deviation change in xi, the odds are expected to change by a
Iwg | 0.60991  4.045 0.000 1.8403  1.4310 0.5876 - )
inc | -0.03505 -4.238 0.000 0.9656 0.6651 11.6348 factor of exp(skBk), holding other variables constant.
_cons | 1.01400  3.545 0.000

For a standard deviation increase in the log of wages the odds of LFP are

b = raw coefficient ;
z = z-score for test of b=0 L1.43 times larger, ...
P>|z| = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
ebStdX = exp(b*SD of X) = change in odds for SD increase in X
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TODO DROP: Percentage change in the odds Interpreting odds ratios (ORs)
1.1f the odds change by a factor of 2, they are 100% larger. 1.OR is a multiplicative coefficient.
2.1f the odds change by a factor of .5, they are 50% smaller. 0 Positive effects are greater than one
3.In general, %change = 100*(OR-1). 0 Negative effects are between zero and one
100% = 100*(2-1) Double odds, is 100% increase 2. Magnitudes of positive and negative ORs are compared by taking the inverse
. f th tive effect i .
-50% = 100*(.5-1) Halve odds, is 50% decrease of the negative effect (or vice versa)

0 A positive OR=2 has the same magnitude as a "negative" OR=1/2.
0 An OR=1/10 is larger than OR=2.

3.The effect on the odds of the event not occurring is the inverse of the OR of
the event occurring.

4.For example

By attending college her odds of LFP are 124 percent larger, holding other
variables constant.

For an additional young child, the odds of LFP are 77 percent smaller, ... Being ten years older makes the odds of not being in the labor force 1.9
For a standard deviation increase in the log of wages the odds of LFP are (=1/.52) times greater, holding other variables constant.

43 percent larger, ...

5.To compute these: listcoef, percent

Categorical Data Analysis Binary Outcomes | 136 Categorical Data Analysis Binary Outcomes | 137




Additional examples of ORs

. listcoef, constant help
logit (N=753): Factor Change in Odds

Odds of: 1InLF vs ONotlInLF

1fp | b z P>|z] eb e bStdx SDofX
+
k5 | -1.39157 -7.250 0.000 0.2487  0.4823 0.5240
k618 | -0.06567 -0.961 0.336 0.9364 0.9170 1.3199
2.agecat | -0.62676 -3.003 0.003 0.5343 0.7370 0.4869
3.agecat | -1.27908 -4.924 0.000 0.2783 0.5889 0.4139
1.we | 0.79771 3.481 0.001 2.2205 1.4319 0.4500
1.hc | 0.13589 0.661 0.508 1.1456 1.0686 0.4885
lwg | 0.60991 4.045 0.000 1.8403  1.4310 0.5876
inc | -0.03505 -4.238 0.000 0.9656 0.6651 11.6348
_cons | 1.01400 3.545 0.000
b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test
e”b = exp(b) = factor change in odds for unit increase in X
ebStdX = exp(b*SD of X) = change in odds for SD increase in X

. listcoef, constant percent help
Interpretations on next page...
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k5:

For each additional young child, the odds of employment are decreased by
a factor of .25, holding other variables constant.

| b z P>|z]| eb ebStdX SDofX
k5 | -1.39157 -7.250 0.000 0.2487 0.4823 0.5240

lwg:
For a standard deviation increase in wages, the odds of employment are

1.43 times greater, holding other variables constant.

| b z P>|z| eb ebsStdX SDofX
Iwg | 0.60991 4.045 0.000 1.8403 1.4310 0.5876
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Odds do not translate linearly into probabilities

1."For a unit increases in X the odds of Y are increase by a factor of OR, holding
other variables constant."

0 Where the increase in X begins does not matter
0 The levels of other variables does not matter
2.This seems to make interpretation as simple as Bs in linear regression
3. Except the meaning of a given factor change depends on p.
4. Think about doubling the odds of being a victim of a crime
a. If the odds are 1/100,000,000, they become 2/100,000,000
b.If the odds are 1/10, they become 2/10

c. Do these mean the same things in terms of the probability of being a
victim?
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OR compared to Pr(y) for groups

1. Two logit models are estimated
logit tenure pub phdyr if female==
logit tenure pub phdyr if female==
where exp(ﬁm%me" ) =exp (ﬁ:ﬂ;" ) =2.
2.Suppose these are the probabilities and odds for men and women:
pm=.500 - Qu=.500/(1-.500) = 1.000
pw=.050 - Qw=.050/(1-.050) = 0.053

3.How does doubling the odds change the probability?

2*Qm = 2.000 - pwm=2.000/(2.000+1) =.667
2*Qw =0.105 - pw=0.105/(0.105+1) = .095
4.Then,

A pM/ A pub =167 = (.667 - .500)
A pW/ A pub =.045 = (.095 - .050)

5. Are the effects equal for men and women?
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Advanced for the curious: The OR as a marginal effect

Computing ORs with predictions and margins

Estimate the model
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, or nolog
Logistic regression Number of obs = 753

Ifp | Odds Ratio Std. Err. z P>]z| [95% Conf. Interval]
+

<snip>

Compute probabilities and odds

. predict double Pinc

. label var Pinc "Pr(inc)"

. gen double Oinc = Pinc / (1-Pinc)
. label var Oinc "0dds(inc)"

Increase income by 1 and compute probabilities and odds

. replace inc = inc + 1 // dangerous to change your data!
. predict double Pincplus

. label var Pincplus "Pr(x=inc+1)"

. gen double Oincplus = Pincplus /7 (1 - Pincplus)

. label var Oincplus "0dds(x=inc+1)"
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Compute the odds ratio for a unit increase in income

. gen double ORinc = Oincplus 7/ Oinc
. label var ORinc "0dds(x=inc+1) / Odds(x=inc)"

The average equals the odds ratio

. sum ORinc // average odds ratio

Variable | Obs Mean Std. Dev. Min Max
ORinc | 753 .9655531 7.06e-09 -9655531 .9655532
The logit results
Ifp | Odds Ratio Std. Err. z
logit inc | -9655531 .0079868 -4.24

Using margins to compute odds at inc and inc+1

. mtable, at(inc=generate(inc)) at(inc=generate(inc+1)) ///
> expression(predict(pr)/(1-predict(pr))) post

Expression: , predict(pr)/(1-predict(pr))
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Estimate the odds ratio
. nlcom (_b[2._at]/_b[1._at]) // estimate OR

_nl_1: _b[2._at]/_b[1l._at]

Coef. Std. Err. z P>|z]| [95% Conf. Interval]

|
+
_nl_1 ] -9655531 .0079868  120.89  0.000 -9498992 .981207

Testing if the OR=1 (NOT 0!)
. testnl (_b[2._at]/_b[1l._at]) =1 // test OR = 1

(1) (b[2._at]/_b[l._at]) = 1

chi2(1) = 18.60
Prob > chi2 = 0.0000
. di sqrt(18.60)
4.3127717
The logit results
Ifp | Odds Ratio std. Err. z P>|z| [95% Conf. Interval]
+
logit inc | -9655531 .0079868 -4.24 0.000 -9500254 .9813346
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Compute the OR for probit

. use binlfp4, clear
. probit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Probit regression Number of obs = 753

Ifp | Coef. Std. Err. z P>|z]| [95% Conf. Interval]

<snip>
inc | -.0210541 .0048205 -4.37 0.000 -.030502 -.0116061

. // #2d compute marginal prediction

. mtable , ///

> at(inc=generate(inc)) ///

> at(inc=generate(inc+1)) ///

> expression(predict(pr)/(1-predict(pr))) post

Expression: , predict(pr)/(1-predict(pr))
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. nlcom (_b[2._at]/_b[1l._at]) // estimate OR

_nl_1: _b[2._at]/_b[1._at]

Coef. Std. Err. z P>|z]| [95% Conf. Interval]

I
_nl_1 ] -9634678 .0085774 112.33 0.000 -9466565 -9802791

. testnl (_b[2._at]/_b[1._at]) =1 // test OR = 1

(1) (b[2._at]/_b[l._at]) =1

chi2(1) = 18.14
Prob > chi2 = 0.0000
The logit results
Ifp | Odds Ratio Std. Err. z P>|z] [95% Conf. Interval]
logit inc | .9655531 .0079868 -4.24 0.000 .9500254 .9813346
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Overview of models for binary outcomes

Why so much time on BRM
1.BRM is foundation for many models for ordinal, nominal, and count variables.

2.A deep understanding of BRM makes other models easier to understand.

Key points
1. Interpretation requires understanding nonlinearity and substance
2.No single method of interpretation is always best

0 Try alternative methods to find which one works best.

3.There are subtle ways in which models for categorical outcomes differs from
those for linear regression

0 Be careful about taking what you know about LRM and appying it to BRM.
0 Be careful about interpreting LRM if there are nonlinearities on the RHS

Categorical Data Analysis Binary Outcomes | 147

B1 Estimation, testing, and fit

Readings and examples
Long & Freese: 3.1, 3.2, 3.3
mdo18-test-fit-*.do; mdo18-svy-*.do

Outline

1. Estimation of regression coefficients with SRS

2. Estimation of regression coefficients with complex samples
3. Compound tests of regression coefficients

4. Assessing fit with IC measures

5.R%-type measures of fit
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Estimation with simple random sampling

Linear regression with OLS
1. OLS minimizes the sum of the squared residuals:

SSR=3l(y,—xB) =Tl (&)
2.0LS has a simple "closed-form" formula:
B=(XX)" Xy
3.The covariance matrix for the estimates
o’ (X'X)iI :Var(ﬁ for Xand Z) = var (ﬂx} COV(ﬁX; ﬁz)
Cov(f.. /) Var(f,)

TODO: Drop section in LRM on estimation?
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Maximum likelihood estimation in LRM

1. MLE maximize the likelihood of what you observe.

Parameter set A: L=0.005 Parameter set B: L=0.029

> >
A
s
P o B
A
o
————————— e
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
x x

Im-mi-3V3.do 20150321

Im-ml-345\V3 do 2015-03.21

2.For LRM, MLE gives essentially the same results as OLS
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MLE for binary logit and probit
1. We observe y=1 or y=0. p; is the probability of observing what was observed

:{Pr(yi =1|x;)

1-Pr(y, =1]x;)

if'y; =1 is observed
I

if'y; =0 is observed

N
2.1f observations are independent the likelihood is L(B|y,X)=][p,

i=1

3. Which is better?

% 7 X3 Xi 0 X3
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Properties of ML estimators
1. Under general conditions, the ML estimates are asymptotically
0 Consistent: mean of the sampling distribution approaches the true value.
0 Efficient: data are used as well as possible.
0 Normal: sampling distribution becomes normal.
When is the N large enough to justify MLE?
1. It is risky to use MLE for N<100. N>500 is generally safe
2. N's should be larger in some cases
0 If there are a lot of parameters, more observations are needed
0 Data are ill-conditioned or little variation in the dependent variable
3. Some models seem to require more observations (e.g., ordinal regression)
4. Small depends on the size of smallest outcome. "Rare events" methods deal with this.
Exact estimation
Run help exlogistic for details.
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Maximizing the likelihood and numerical methods

N\

3
1. Algebraic maximization of /n L(B|X,y) is not possible

2. Numerical methods search for the maximum using the slope and change in
slope of the likelihood equation (i.e., first and second derivatives)

3. Here is the intuition of what happens and what can go wrong
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Numerical methods and climbing a hill
1. Numerical methods are like finding the top of a hill when blindfolded
0 What direction do you go?
0 How big of a step will you take? Always the same?
0 What would it take to make sure you were at the top?
0 What would you want to know before playing this game?
0 Will you end up at the same place as another person? Why? Why not?

2. Estimates of coefficients are usually very close in different software, with
perhaps small differences in standard errors
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What if problems occur with ML?
1. Types of problems
0 lack of convergence
0 convergence to the wrong answer
0 extremely large standard errors
0 Instability with minor model changes
2.What to do if you encounter problems
0 Verify the model specification
0 Verify the variables and the sample
0 Rescale varibles with extremely large/small variances

3.If a very large proportion of cases are in one of the categories of the outcome,
convergence may be difficult. Firth regression or extreme value logit.
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Perfect Prediction - #1

1. Perfect prediction occurs when the value of a predictor perfectly predicts the
outcome
Mentor is | Pubs greater than 10?

male? | LoPub HiPub | Total
+ +
Female mentor | 4 0] 4
| 100.00 0.00 | 100.00
+ +
Male mentor | 293 6 | 299
| 97.99 2.01 | 100.00
+ +
Total | 297 6 | 303
98.02 1.98 | 100.00

2.The 0 leads to the following problem
0 The odds of LoPub if female mentor are 4/0 which is undefined.
0 The odds of HiPub if female mentor are 0/4=0.

3. Logit drops the four cases with female mentors since their p; in the likelihood
function is 1.

4. Logit on next page...
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. logit hipub i.mmale phd, nolog

note: O.mmale != O predicts failure perfectly
0.mmale dropped and 4 obs not used

This means: female mentors are low publishers with probability 1.
note: 1.mmale omitted because of collinearity

Logistic regression Number of obs = 299
LR chi2(1) = 0.23
Prob > chi2 = 0.6320
Log likelihood = -29.276794 Pseudo R2 = 0.0039
hipub | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
+
mmale |
Female men.. | 0 (empty)
Male mentor | 0 (omitted)
phd | -.1927085  .4023944 -0.48 0.632 -.9813871 .5959701
cons -3.293021 1.272882 -2.59 0.010 -5.787824 -.7982179

Categorical Data Analysis Estimation, Testing and Fit | 10

Overall

1. Numerical methods for ML estimation work very well "when your model is
appropriate for your data" (Joreskog)

2.Cramer (1986:10) gives excellent advice
Check the data, check their transfer into the computer, check the actual
computations (preferably by repeating at least a sample by a rival
program), and always remain suspicious of the results, regardless of the
appeal.

3. Perhaps, especially if the results are appealing!
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Estimation with complex samples

Readings and examples

Heeringa, S., West, B.T., & Berglund, P.A. (2010). Applied survey data analysis.
Boca Raton, FL: Chapman Hall/CRC. (HWB)

StataCorp Stata Survey Data Reference Manual. StataCorp LP: College Station, TX.
Long & Freese, 100-103
Overview

1. Standard software assumes a simple random sample (SRS)

0 Each person in the population has the same probability of selection

0 A person being selected does not affect the probability of another person
being selected.

2.SRS is conceptually and mathematically simple, but impractical.
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3. Most major datasets use a complex sampling designs.
0 Clustering: clusters are sampled; all cases in cluster are included.
0 Stratification: strata are chosen, not sampled; sampling occurs within strata.

0 Sampling weights: different cases represent different proportions of the
population.

4.Complex sampling can:
0 Reduce costs
0 Increases or decrease sampling variability
0 Increase the representation of subpopulations
5.1f you do not adjust for complex sampling
0 Variances of estimates are usually underestimated
0 Estimates might be biased
6. Estimation with complex sampling is simple

7.Post-estimation commands work with complex estimation
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Complex sampling designs
0.035

0.03

0.025

Standard Error of P
Strata
[:\We@hﬁng

100 250 500 750 1000 1250 1500 1750 2000 2250 2500
Sample Size

Categorical Data Analysis Estimation, Testing and Fit | 14




Clustering

1. Clusters or primary sampling units (PSUs) divide the population into distinct
and exhaustive groups

0 Clusters are naturally occurring groups such as blocks in a neighborhood,
classes within a school

2.People in a cluster tend to be more similar than people in the population
0 The makes the sample behave as if it were "smaller"
0 Since cases are not independent, statistical efficiency is lost
Stratification
1. Individuals are in disjoint and exhaustive strata based on known characteristics

0 Racial groups; gender; rural/urban; large/small hospitals; country
2. Size within strata is fixed, not random
3. Different sampling fractions can be used for subpopulations

4. When individual strata are more homogeneous than the population, there is
an increase in efficiency. It can "make your sample larger"
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Sampling weights

1. Weights are probabilities of selection.-

2.The probability of inclusion differing across individuals

3. Weights are the share of the population represented be a single observation
The effective N

1. Each sampling complication changes the "effective N" in the sample (HWB 34)

Design Estimator y se(?) Effective n
SRS Yers 40.77 2.41 320
Clustered Ve 40.77 3.66 13.9
Stratified Yer 40.77 2.04 444
Stratified, clustered  y ¢ 40.77 2.76 244

2.The actual n is the same with each design; the effective n varies by design

3.The SE's reflect the change in the "effective n" caused by the design
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Using Stata for survey data

1. There are many subtle points involving the survey commands. Here | provide
only an overview. For details see Stata Survey Data manual.

2. Always check with the data provider on how to adjust for complex sampling
3. Using SVy commands involves two steps

a.svyset to describe the design

b.svy: for commands such assvy: logit
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Example: Health and Retirement Study

1. My example examines
arthritis 1l1=arthritis O=no arthritis

2.Regressors

female Is female?

age Age at 2006 interview
edllless Ed years <= 11?

edl2 Ed years = 12?

ed1315 Ed years 13-15?

edl6plus Ed years 16 or more?

3.The variables the describe the complex sample are:

secu sampling error computation unit
kwgtr 2006 weight: respondent level
stratum stratum id

4.1n practice it can be hard to be sure which variables to use.
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Declaring the survey design
1. The design is specified

. svyset secu /// clusters

> [pweight=kwgtr], /// weights

> strata(stratum) /// stratum

> vce(linearized) singleunit(missing) // method of compute SE"s
pweight:

VCE:
Single unit:
Strata 1: stratum
SU 1: secu
FPC 1: <zero>

2.The output means:
vce(linearized) : linearization for estimating standard errors.

singleunit(missing) : stratum with single sampling unit is missing.
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Effects of svy adjustment on descriptive statistics
1. Non-survey estimates:

sum var
2.Survey adjusted estimates:

svy : mean var

estat sd

3. Comparison:

] srsMean  svyMean Ratio srssD svySD Ratio

arthritis | 0.60 0.57 1.05 0.49 0.50 0.99
age | 68.50 66.50 1.03 11.13 10.38 1.07
female | 0.59 0.54 1.08 0.49 0.50 0.99
edllless | 0.24 0.20 1.24 0.43 0.40 1.08
edl2 | 0.33 0.33 1.02 0.47 0.47 1.00
ed1315 | 0.21 0.23 0.93 0.41 0.42 0.97
edlé6plus | 0.21 0.25 0.85 0.41 0.43 0.94
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Effects of survey adjustments on regressions
// no survey adjustment

logit arthritis age i.female i.ed4cat
estimates store nosvy

predict nosvyphat

label var nosvyphat "nosvy phat™

// weights and cluster but not stratum

logit arthritis age i.female i.ed4cat ///
[pweight=kwgtr], cluster(secu)

estimates store wtclstr

predict wtclstrphat

label var wtclstrphat "wtclstr phat”

// weights, clusters, and stratification

svyset secu [pweight=kwgtr], 77/
strata(stratum) vce(linearized) singleunit(missing)
svy: logit arthritis age i.female i.ed4cat
estimates store svy
predict svyphat
label var svyphat "svy phat™
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. // #9 tables of estimated coefficients

Variable | srs wtclstr svy
age | 1.046 1.049 1.049
| 29.57 910.60 21.92 <
female | 1.759 1.779 1.779
| 17.68 12.10 12.99
edllless | 1.162 1.206 1.206
| 3.50 2.57 3.16
ed1315 | 0.961 0.937 0.937
| -0.92 -0.94 -1.21
edléplus | 0.703 0.638 0.638
| -8.20 -11.47 -8.54
_cons | 0.054 0.046 0.046
| -26.60 -226.92 -19.54
+
N | 18341 16862 18375
legend: b/t

. pwcorr nosvyphat wtclstrphat svyphat

| nosvyphat wtclstrphat svyphat
+

0.9984
0.9984

1.0000
1.0000

wtclstrphat |

svyphat | 1.0000

Categorical Data Analysis

= t-value
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Hypothesis testing of regression coefficients
1. Hypothesis testing is critical for the effective use of regression models
2. A quick review of the theory of hypothesis testing
3.Wald and LR tests for regression coefficients with a focus on testing multiple
coefficients
0 We are more interested in tests of marginal effects, but this lecture explains
critical features of testing
4.There are many ways to invalidate standard testing. See this great review:
Young and Holsteen. 2015. Model Uncertainty and Robustness: A
Computational Framework for Multimodel Analysis. Sociological Methods
and Research.
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Barnett's model of inference

deduction
Model > Potential
Data
P
/7%%,
%
N
v Observed
World Data

test-barnettV1.do jsl 2015-03-12

Categorical Data Analysis
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The importance of off diagonal element

llety=p+Bx+p1+¢
2.The covariance matrix the X and Z coefficients:

Var(/}x) Cov(/}w/}z)
Cov(ﬁz,ﬁx) Var([?z)

3. The diagonal provides the standard errors for tests of single coefficients.

o’ (X'X)il =Var(ﬁ for X and Z) =

4. Off-diagonal elements reflect how the regression plane "rocks"
0 These are essential for tests of multiple coefficients.
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What affects the variance of an estimate?
1. Let:
y=pB+BX+p1+¢
2.1f pxz is the correlation between X and Z, then:
A 0—3
Var(ﬁx)f No: (1—,0§z)
Each component affects the variance

Increasing N decreases Var (,BX )

Increasing o; decreases Var

Increasing p;, increases Var(ﬁx)
Increasing o} increases Var(/}x)

Categorical Data Analysis
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Testing individual regression coefficients
1. Standard output provides tests of regression coefficients
2.1f Ho: B, = B, is true, the ML estimator is

ﬁk iNormal (ﬂ;,Var(/Aﬁ())
3.The test statistics for Ho: 5, =0 is
=30/,

4.1f Ho is true, then z is distributed normally:

Reject Ho Reject Ho
N e

-1.96 0 1.96

estzds2 20141205

Categorical Data Analysis
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5.Two types of errors are possible when testing

Decision
Ho: B=0 Accept Ho Reject Ho
In fact B=0 No error Type I: Pr(reject true)=a
Size of test (the shaded tail).
In fact Bz0 Type Il: accept false No error

Power of test.
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z-test of B’s for logit - #11
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Log likelihood = -452.72367 Pseudo R2 = 0.1207
Ifp | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
+
k5 | -1.391567  .1919279 -7.25  0.000 -1.767739  -1.015395
k618 | -.0656678 068314 -0.96 0.336 -.1995607 0682251
l.we | .7977136  .2291814 3.48 0.001 3485263 1.246901
1.hc | .1358895 .2054464 0.66 0.508 -.266778 .5385569
Iwg | .6099096 .1507975 4.04 0.000 .314352 .9054672
inc | -.0350542 .0082718 -4.24 0.000 -.0512666 -.0188418
_cons | 1.013999 .2860488 3.54 0.000 .4533539 1.574645

Having young children has a significant effect on the probability of
working (z=-7.25, p<0.01 for a two-tailed test).

The effect of having older children is not significant (z=-.96, p=.34).
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Hypothesis for multiple coefficients
1. Our model:
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
2. Tests involving multiple coefficients
0 Kids have no effect on LFP
0 Education has effect on LFP

Ho: Bks =Bre1s =0
Ho: ch =th =0
3. Consider algebraic statements and probabilistic statements.
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Algebraic relationships among parameters in hypothesis

1. Consider X and Z from this regression:
y=Bo+BxX+PZ+.. +€

2. Hypotheses are algebraic statements.

Ha: Bx=0 <= income has no effect

Hg: Bz=0 <= wealth has no effect

He: Bx= Bz <= income & wealth have equal effects
Hp: Bx=PBz=0 <= income & wealth have no effects

3.1f Ha and Hp are true, then Hc and Hp must be true.
0 If Bx= 0 and Bz=0 then mathematically Bx=Bz=0

Categorical Data Analysis
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Statistical conclusions from hypothesis tests
1. Consider two tests of hypotheses:
Ha: Bx=0
He: Bz=0
2. Do results from these tests provide insights regarding
Hc: Bx = Bz
Ho: Bx=PBz=0

3. Accepting Ha and Hg does not imply you will accept either Hc or Hp!

=> test results says Ha might be true or might not

=> test results says Hg might be true or might not

0 Who stole my wallet?
4. Consider the formula from the LRM and the effect of collinearity:
y=p6,+pX+p1+¢
(TZ

Verl A ) Nor o)

Categorical Data Analysis Estimation, Testing and Fit | 32




Wald tests of joint hypotheses
1. ML theory shows that:

ﬁiNonnal(B,Var(ﬁ))

2. With three coefficients:

P 2
Bl % %i %aik
r o 2 o
Va ﬁ X O-/fx-/fn O-/fx O-/fxﬁz
B) \%hp i %

3. T indicates how the regression plane rocks as the sample changes.
X Pz

4.The Wald test measures:
0 How far estimates are from hypothesized values.
0 How flat the likelihood functions is.
Graphically...
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Wald test and the log likelihood function

Curvature
InL(p) ] \
&inL
2
op
i Distance |
T T
Bc=0 Bu
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Curvature of In L curve and the Wald test

1. The flatter the curve,
L(p) the less "significant" the
distance from estimate

to constraint

InLs(Be)

2. How would increasing
the sample size affect the
curvature?

3. What if the model is
"nearly" unidentified?

testwald-Ir-im-shape.do 2014-12-15
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Wald test of linear constraints
1. Consider linear constraints QB =0.
0 B is vector of parameters
0 Q is matrix that combine the B's

2.Examples:
0QB=B1-B2=0
oQB=P1=0
0QB=PB1=B=0

3.The Wald statistic equals:

w=[@p-0][ovar(B)e] [ep-0]-
[Distance] [Curvature] [Distance]

4.See Long 1997 for details.
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Sampling distribution of the Wald test

If Ho is true, as N increases the sampling distributions of W converges to the
chi-square distribution with degrees of freedom equal to the number of
constraints being tested.

Reject Ho
Accept Ho
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Chi-square distribution and degrees of freedom
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Example: Wald tests of regression coefficients - #3
The model is:
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc
estimates store logitmodel
Ho: Bxs =0
. test k5
(1) [Ifplks =0

chi2( 1)
Prob > chi2

52.57
0.0000

The effect of having young children on entering the labor force is
significant at the .01 level (X?(1)=52.6).

Note

Chi-square 52.57 equals the z-value squared -7.25*-7.25.
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How do you know the names of coefficients to use in test?
. logit, coeflegend

Coef. Legend

Ifp |
+ —
k5 | -1.391567 _b[k5]
k618 | -.0656678 _b[k618]
|
agecat |
40-49 | -.6267601 _b[2.agecat]
50+ | -1.279078 _b[3.agecat]
|
we |
college | .7977136 _b[1.wc]
|
hc |
college | .1358895 _b[1l.hc]
Iwg | .6099096 _b[lIwg]
inc | -.0350542 _b[inc]
_cons | 1.013999 _b[ cons]
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#14 HO: ch = th =0
. test 1.wc 1.hc // joint test

(1 [Ifp]il.wc =0
( 2) [Ifpli.hc =0
chi2( 2) = 17.83
Prob > chi2 = 0.000

We can reject the hypothesis that the effects of the husband's and the
wife's education are simultaneously zero (X2(2)=17.83, p<.01).

#15 Ho: Bwe = Phe
. test 1.wc = 1.hc

(1) [Ifp]li.wc - [Ifp]l.hc =0

3.24
0.0719

chi2( 1)
Prob > chi2

The hypothesis that the effects of husband's and wife's education are
equal is rejected marginally at the .05 level (X2(1) =3.24, p=.07).
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LR test of nested models
The LR test is an alternative to the Wald test.

Unconstrained=>  InL(Bu)-

Constrained=>  InL(Bc)

Bc=0 Bu

Ir test-wald-Ir-lmV2.do 2015-06-10
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Nested models
1. A constrained model = unconstrained model + constraints.
2. Constraints can be things like
0 A coefficient is 0
0 Two coefficients are equal
3. Let Mc be the constrained model.
4.Let My be the unconstrained model.
5.Mc is nested in My.
6. Consider these models:

M1: Pr(y=1]|x) = A(Bo + Bix1+ Baxa )
M2: Pr(y=1|x) = A(Bo + Bix1 + Baxs )
:Pr(y=1]x) = A(Bo + Bix1+ Bax2 + Baxs )

(Priy=1]x) =A(Bo + Buxa+ Baxa+ Baxs + Baxa )
7. Which are nested?
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Example: LR tests of regression coefficients - #4
HO: Bwe=Bnc=0

Full model
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc

Iteration O: log likelihood = -514.8732

Iteration 4: log likelihood = -452.72367

Logistic regression Number of obs = 753
LR chi2(8) = 124.30
Prob > chi2 = 0.0000
Pseudo R2 = 0.1207

Log likelihood = -452.72367

. estimates store full

Restricted model
. logit Ifp k5 k618 i.agecat Iwg inc, nolog

. estimates store dropwchc
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LR test of Ho: wc=hc=0 Summary on testing
. Irtest full dropwchc

1. Under general conditions, the tests are asymptotically equivalent

Likelihood-ratio test LR chi2(2) = 18.68 Statistici Il fer LR
(Assumption: dropwchc nested in full) Prob > chi2 = 0.0001 O Statisticians generally prefer

The hypothesis that the effects of the husband's and the wife's education O In practice, convenience determines which is used

are simultaneously equal to zero can be rejected at the .01 level 2.LR and Wald tests can be used with other models using MLE
(LRX2(2)=18.7). 3. Wald tests can be used when LR cannot

0 With survey estimation, LR tests are not possible

4. Testing multiple coefficients is often critical for your work

5. Avoid these pitfalls:
0 Testing things you aren't interested in (regression coefficients?)
0 Not testing things you are interested in (marginal effects?)

6. Never "add" the results of two or more tests!
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Information criteria to assess fit Computing IC measures
1. More complex models fit better at the cost of more parameters. 1. Define
2. Likely you prefer a model that fits better without “too many” parameters N = number of observations
3.Two information criteria are commonly used to compare fix and complexity k = number of parameters
AIC: Akaike's information criterion InL = log likelihood
2.Then

BIC: Bayesian information criterion

IC =fit + complexit
4.These criteria formalize the tradeoff between fit and complexity : plexity

- * .
5.1C are computed as AIC =-2InL +2%k // smaller complexity penalty

= * .
IC = -Fit +  Complexity BIC =-2InL +In(N)*k // larger complexity penalty

= -2InL + Function of N and # of parameters 3. BIC prefers more parsimonious models than AIC

0 Fit is negative; more negative is a better fit
0 Complexity is positive so more positive is worse fit
6.A model with a smaller IC is preferred.
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Comparing models Software variations in IC measures

1. Estimate multiple models 1.BIC in Stata

2.Select the model with the smallest IC BIC = [—ZIn(IikeIihood )] +[InN *k]

3.Consider models M1 and M2
a.ABIC = BIC1 - BIC2
b.If ABIC > 0 choose M2 (BIC1 > BIC2)
c. If ABIC < 0 choose M1 (BIC1 < BIC2)

where k is the number of parameters
2.BIC'

BIC'=[-G*(M) | +[ df, InN |

4. While BIC is not a statistical test, Raftery suggests degrees of evidence G*=LR chi-squared and df, =# of regressors (not parameters)
Absolute Strength of 3.BIC deviance or BIC in Raftery's notation
ABIC Evidence BICP = [D]—[df In N]
0-2 Weak where D is the deviance with df = N - (# of parameters).
2-6 Positive 4. Criticall
6-10 Strong ’ v: ) ) 5 5
~10 Very strong BIC, - BIC, = BIC| - BIC, = BIC] - BIC}
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Example: Comparing models with IC
Adding inc-squared and dropping k618 & hc

use binlfp4, clear
logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

. estimates store ml

. estat ic

Model | Obs H(null) 11 (model) df AlIC BIC
+

ml | 753  -514.8732  -452.7237 9 923.4473 965.0639

Note: N=Obs used in calculating BIC; see [R] BIC note
. qui fitstat, ic save
logit Ifp k5 i.agecat i.wc Iwg c.inc##c.inc, nolog
f estimates store m2

. estat ic
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. estimates table ml m2, stats(N bic) b(%9.3f) t(%6.2F)

Variable | ml m2
+

K5 | -1.392 -1.385
| -7.25 -7.27

k618 | -0.066

| -0.96
agecat 2 | -0.627 -0.585
| -3.00 -2.87
31 -1.279 -1.186
| -4.92 -5.08
we | 0.798 0.904
| 3.48 4.36

he | 0.136

| 0.66
Iwg | 0.610 0.631
| 4.04 4.19
inc | -0.035 -0.065
| -4.24 -3.47
c.inc#c.inc | 0.000
1 1.88

+
N 753 753
bic | 965.064 956.484
legend: b/t
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Ffitstat for IC measures

1.SPost Fitstat command compares BIC and AIC statistics

. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
. quietly fitstat, ic save

logit Ifp k5

. i.agecat i.wc
. fitstat, ic diff

Iwg c.inc##c.inc, nolog

1 Current Saved Difference

¥

AIC 1
AlC | 919.491 923.447 -3.956
(divided by N) | 1.221 1.226 -0.005

+

BIC |
BIC (df=8/9/-1) | 956.484 965.064 -8.580
BIC (based on deviance) | -4031.438 -4022.857 -8.580
BIC" (based on LRX2) | -79.887 -71.307 -8.580

Difference of 8.580 in BIC provides strong support for current model.

2.There is strong support for the model that adds income-squared and drops
k618 and hc
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Pseudo R?'s

1. It would be great to have a single number to summarize model fit.
2.Such a measure would aid in comparing competing models.
0 Within a substantive area, measures of fit might provide a rough index of
whether a model is adequate.
0 If prior models of LFP routinely have values of .4 for a given measure, you
expect analyses with a different sample or with revised measures of the
variables to have a similar value for that measure.

3.Long (1997) warns
I am unaware of convincing evidence that selecting a model that maximizes

the value of a given measure of fit results in a model that is optimal in any
sense other than the model having a larger value of that measure.

4. Still, these measures are commonly used in the literature and you should use
the measure that is commonly used in your field. But, do not over-interpret it!
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Summary

1.1C measures can be valuable for selecting models that are not nested
0 Do not over use these measures
0 Think about your models

2.Scalar measures of fit are sometimes required by referees, but are often of
little value.

Categorical Data Analysis Estimation, Testing and Fit | 55

B1 Testing marginal effects

Readings and examples
Long & Freese: Chapters ???
0 See references in these chapter
Mize, Doan and Mize — forthcoming working paper

mcol8-test-meffects-*.do a
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From regression coefficients to marginal effects

1. Our interest is in regression coefficients to estimates predictions and estimate
marginal effects.

2. Predictions
Logit: f’\r(y =1]x)= A(xﬁ) exp(xﬂ:;

3. Discrete change
APr(y=1 ~ _
_AP(y=1x) Pr(y=1|x =end,x)-Pr(y=1|x=x, =start,x)
A(X,: start —end)
4.Marginal change
0Pr(y=1|x) A
T— f(xﬁ)ﬂk

5.Standard errors computed with delta method , bootstrapping, or simulation.
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Testing regression coefficients and marginal effects
1. A marginal effect depends on all parameters and the x where estimated:
oPr(y=1|x)
T = f (XB)ﬁk
2.The size of the effect depends on:
0 All of the Bys, not just Bk
0 The values of the x’s where the effect is evaluated
3. Does Bi=0 imply OPr(y=1|x)/dx, =0?
0 If you know Bx=0, then dPr(y=1|x)/dx, =0
0 If you accept Ho: Bk=0, dPr(y=1|x)/dx« might be 0 or might not
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Tests of B« and MC(wc) can give different results #1

1. Fit the logit and test Bwc
. logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog

Ifp | Coef. Std. Err. z P>|z]| [95% Conf. Interval]

+

we |
college | .7977136 .2291814 3.48 0.001 .3485263 1.246901

2. Compute DC(wc) for different numbers of young children
| Change p-value

+
DCR(wc | k5=0) | 0.168 0.000
DCR(wc | k5=1) | 0.182 0.001
DCR(wc | k5=2) |  0.087 0.013
DCR(wc | k5=3) |  0.027 0.085

3.The significance of DCR(wc) depends on the number of young children.
0 Does this make more substantive sense than saying that young children has
a significant effect on LFP?
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Comparing marginal effects from the same equation

k5_one —— J
k618_one
agecat_2vs1 ——
agecat_3vs1 ——
agecat_3vs2 ——
wc_1vs0 ——
hc_1vs0 —T—
lwg_sd -
inc_sd ——
W 2 0 2 4

Average Discrete Change with 95% CI

1. We can determine the size and significance of DCs
2.We can compare the size of two DCs
3.How do we test if two effects have the same size?

0 We must estimate multiple effects simultaneously
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Testing DC(hc) = DC(wc) - #2

| Change std Err z-value p-value LL uL
+
hc |
college vs no | 0.028 0.043 0.663 0.508 -0.042 0.098
wc |
college vs no | 0.162 0.044 3.689 0.000 0.090 0.235
ADC(wc) [ ° !
ADC(hc) I @ {
T T T T
-1 0 A 2 .3

1.Can | conclude?

A woman attending college has a significantly larger effect on LFP than
that of her husband attending college.

Categorical Data Analysis Testing Marginal Effects | 6

Overlapping Confidence Intervals
1.The 90% confidence interval [ Lower level, Upper level ] can be interpreted as:

With repeated samples we would expect our prediction to be within the CI
90% of the time.

2.For example:

-1 0 A 2 .3

3. We conclude

Our results suggest that the effect of a woman attending college could be
as small as .090 or as large as .235 with 90 percent confidence. The effect
of the husband'’s college is expected to fall between -.042 and .098.

4. Can we conclude that DC(wc)=DC(hc)?
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Cls do not over: The effects are significantly different.

ADC(x1)

ADC(x2) | . —

ADC(x1)] } ® {
ADC(x2) [ L d
T T T T
-1 0 A 2 3
Average Discrete Change
Conclusion

Make the formal test!
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Formally testing if MEs are equal
1.To test:
Hy:A =A,
2.Compute the statistics:
Ai-As
ar(hi-ao)
3.The variance of the difference is:

~2

~ ~ ~2 ~
Var(A1—Az):O'1 +02-2012

4.To estimates 8‘1_2 we need to simultaneously estimate the effects

0O In special cases o1, is known to be 0
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Joint estimation and testing of effects - #4
1. Fit the model

2. Jointly estimate ADC(wc) and ADC(hc)
. margins, dydx(wc hc) post

dy/dx w.r.t. : 1.wc 1l.hc

Delta-method

1
| dy/dx  Std. Err. z P>|z]| [95% Conf. Interval]

+

we |
college | .1624037 .0440211 3.69 0.000 .076124 .2486834

|

he |
college | .0281828 .042534 0.66 0.508 -.0551824 .1115479

Note: dy/dx for factor levels is the discrete change from the base level.
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3.Testing if DC(wc)=DC(hc)
. test 1.wc = 1.hc

(1) 1l.wc -1.hc =0
chi2( 1) = 3.33
Prob > chi2 = 0.0680

4.We conclude:

The effects of the wife and the husband attending college on labor force
participation are not significantly different (p>.05).

Or:

The effects of the wife and the husband attending college on labor force
participation are significantly different (p<.10).

ADC(wc) e

ADC(hc) —T—
T T T
-1 0 A1 2 .3
Average Discrete Change with 90% Cl
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Code: posting results from margins

1. Fit the model and store the estimates

logit Ifp k5 k618 i.agecat i.wc i.hc lwg inc, nolog
estimates store logitmodel

2. Compute the effects and post the results
margins, dydx(wc hc) post

0 post replaced the logit estimates in memory with those from margins
. matlist e(b)

| Ob. 1. Ob. 1.
| we wc hc hc
+. e e e e e e o o o o o o
yl | 0 .1624037 0 .0281828
. matlist e(V) // covariance for predictions
| Ob. 1. Ob. 1.
| wc wc hc hc
+ S,
Ob.wc | 0
l.we | 0 .0019379
Ob.hc | 0 0 0
1.hc | 0 -.0008315 0 .0018091
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3.Test if the effects are equal
. test 1.wc = 1.hc

. lincom 1.wc - 1.hc

(1) 1l.wc -1.hc =0

| Coef. Std. Err. z P>]z| [95% Conf. Interval]
@1 .1342209 .073553 1.82 0.068 -.0099403 .2783822
. mlincom 1 - 2, stats(all)
| lincom se zvalue pvalue 11 ul
1] 0.134 0.074 1.825 0.068 -0.010 0.278

4.Restore the regression estimates
estimates restore logitmodel
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Comparing more complex effects

0.0

1. For DC(xa) compute Pr(y|x.=start, x) and Pr(y|x,=end, x)
2. For DC(xp) compute Pr(y|xp=start, x) and Pr(y|x,=end, x)
3.To test Ho: DC(xa) = DC(xy), estimate:
[Pr(y|xa=end, x)-Pr(y | xa=start, x)] - [Pr(y|xo=end, x)-Pr(y|xp=start, x)]
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Code: margins, at(var=gen(expression))

1.at(var=gen(expression))

0 predictions with var equal to the expression)
2.at(x=gen(x+1))

0 predictions at values one larger than the observed x
3.at(x=gen(x))

0 predictions at the observed values of x
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Testing if DC(inc+sd)=DC(lwg+sd) - #5

1. Compute standard deviations

. qui sum inc

local sdinc = r(sd)
. qui sum lIwg

local sdlwg = r(sd)

2. Estimate four probabilities

. margins, at(inc=gen(inc)) at(inc=gen(inc+ sdinc")) ///

> at(lwg=gen(lwg)) at(lwg=gen(lwg+ sdlwg")) post
Expression : Pr(Ifp), predict(Q)
1._at : inc = inc
2._at :inc = inc+11.63479853339243
3._at : lwg = Iwg
4. at : lwg = lwg+.5875564251146244
| Delta-method
| Margin  Std. Err. z P>|z]| [95% Conf. Interval]
+
_at |
1 ] .5683931 .0166014 34.24 0.000 .535855 .6009312
2 | .4825886 .0257951 18.71 0.000 .4320312 .5331459
3 1 .5683931 .0166014 34.24 0.000 .535855 .6009312
4 | .6408189 -0228361 28.06 0.000 -596061 .6855768
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3. Compute DC(inc+sd)=DC(lwg+sd)

. qui mlincom 2-1, rowname(DCinc+sd) stats(all) clear
mlincom 4-3, rowname(DClwg+sd) stats(all) add

| lincom se zvalue pvalue 11 ul
+
DCinc+sd | -0.086 0.019 -4.404 0.000 -0.124 -0.048
DClwg+sd | 0.072 0.017 4.344 0.000 0.040 0.105

Confirm DCs are correct

. mchange inc lwg, stats(est se z p Il ul) amount(sd) width(8)
logit: Changes in Pr(y) | Number of obs = 753

Expression: Pr(Ifp), predict(pr)

| Change Std Err z-value p-value LL uL

+
inc +SD | -0.086 0.019 -4.404 0.000 -0.124 -0.048
Iwg +SD | 0.072 0.017 4.344 0.000 0.040 0.105
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Test that the ADCs are equal but opposite
. test (2._at-1._at)=(-1*(4._at-3._at))

(1) -1bn._at + 2._at - 3._at + 4._at = 0

chi2( 1) = 0.27
Prob > chi2 = 0.6023

The magnitude of the effects of income and wages are not significantly
different (p=.60).
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Test equality of DCs by computing second difference
. mlincom (2-1)+(4-3), rowname(2nd difference) stats(all)

lincom se zvalue pvalue 1 ul

2nd differ-e

Or:
lincom (2._at-1._at)+(4._at-3._at)

|
+
| -0.013 0.026 -0.521 0.602 -0.064 0.037.

(1) -1bn._at + 2._at - 3._at + 4._at = 0

Coef. Std. Err. z P>]z| [95% Conf. Interval]

|
+
|

(¢H) -.0133787 .025672 -0.52 0.602 -.0636949 .0369374
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Tool: Summary of commands for comparing two DC’s Comparing ideal types and profiles -#6

sum x1

local Dx1 = r(sd) // change in x1; can be any value 1.In the lecture Binary Regression Model we computed predicted probabilities
sum x2 _ for these ideal types:
local Dx2 = r(sd) // change in x2; can be any value
| Pr{y) 11 ul
margins, at(xl=gen(x1l)) at(xl=gen(x1+ Dx1%")) /// atmeans for DCM - + -
at(x2=gen(x2)) at(x2=gen(x2+ Dx2")) post Average person | 0.578 0.539 0.616
Younger lower educ w kids | 0.159 0.068 0.251
mlincom (2-1)-(4-3) // test of equality ) Young more educ w k!ds | 0.394 0.234 0.554
mlincom (2-1)+(4-3) // test of equal magnitude Middle age higher educ w kids | 0.754 0.681 0.828
Older w higher educ | 0.631 0.528 0.734

2.1 want to say:

Among those with higher education, women who are middle aged with
young children are no more likely to be in the labor force than older
women whose children are no longer living at home.

3.To justify this, | need to jointly estimate the probabilities.
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Estimate profiles simultaneously Test if probabilities are equal
. mtable, clear ci /// . . . I .
2 at((meany _ally 777 4. Estimate differences using the posted predictions:
> at(agecat=1 k5=2 k618=0 wc=0 hc=0 inc=10 Iwg=0.75) /// . mlincom 4 - 5, rowname(MidEdDad-OldHiEd) clear twidth(20)
> at(agecat=1 k5=2 k618==0 wc=1 hc=1 inc=16.6 lwg=1.62) ///
> at(agecat=2 k5=0 k618=1.37 wc=1 hc=1 inc=27.7 lwg=1.41) /// 1 lincom pvalue 1 ul
> at(agecat=3 k5=0 k618==0 wc=1 hc=1 inc=27.9 lwg=1.38) /// +
> post MidEdDad-OldHiEd | 0.124 0.007 0.034 0.214
Expression: Pr(1fp), predictQ 5. My initial impression was wrong and | conclude:
2. 3. 1. 1. L . L .
I K5 K618  agecat  agecat we he Young mothers with higher education have significantly higher chances of
+ being in the labor force than older women with higher education who no
1 .238 1.35 .385 .219 .282 .392 .
2| 2 0 0 0 0 0 longer have children at home (p<.01)
3| 2 0 0 0 1 1
4] 0 1.37 1 0 1 1
5 0 0 0 1 1 1
|
| Iwg inc Pr(y) 1 ul
+
1 1.1 20.1 0.578 0.539 0.616
2| .75 10 0.159 0.068 0.251
3] 1.62 16.6 0.394 0.234 0.555
4| 1.41 27.7 0.754 0.681 0.827
5 1.38 27.9 0.630 0.527 0.733
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Using the returned atspec from mtable Summary on testing marginal effects
1.To avoid typing in values in the at() specification 1.Too often researchers use only the default tests from the estimation command
0 Use the mtable return r(atspec) to save the atspec 0 They test things they aren't interested in
0 Run mtable with multiple at()’s 0 They don't test things they are interested in
2.See Long and Freese 2014, page 275+ for details 2.The methods above let you test many useful hypotheses

3.Remember: tests of regression coefficients and marginal effects do not always
give the same result.

4. Overlapping Cls do not indicate a the estimates are equal
5.To test if MEs are equal, estimate them jointly
6. Later we extend this idea to tests across models
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B1 Nonlinearities on the RHS

Readings and examples
Long & Freese: pages 301-302

mdo18-nonlin-*.do
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Probabilities do not always get larger or smaller

=<o =<o
=7 =
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X X

001010 brm-probyV3.do 201503:31 Oto1negative brm-probyV/3.do 20150331
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Real data might looks like this
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Overview
1. Assume that xB does not have power terms or interactions.
2.Then as xi increases, Pr(y|x) must always increases or always decreases.
0 The is required by the parametric form of the logit and probit model
3. Substantively, does this make sense?
0 Should the probability only increase or only decreases with changes in xi?
0 Should the maximum probability be 1.0?
0 The minimum 0.0?

4. Nonparametric smoothers do not assume any form for the relationship
between one x and the outcome

0 Lowess (lowess) and local polynomial smoothing (Ipoly)
5.1 often start analyses with a nonparametric fit of key regressors to the outcome

0 Here’s why
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Nonparametric smoothing to assess nonlinearities

Could these curves be generated by a logit model?
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Could these data be generated by a binary logit model? - #2
Good health is “logit-like”
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Arthritis and diabetes are not “logit-like”

What is the substantive cost of assuming a logit-like functional form?

i

75

5

Pr(arthritis|age)
Pr(diabetes|age)
2

25

o T T T T ) °
50 60 70 80 920 100
Age

— Logitonage —— Polynomial smooth

— Logitonage === Polynomial smooth
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Adding nonlinearities to a model
1. Consider model where x is age with other controls
Pr(y=1]x)=A(B, +Bx+ X"+ Bx’ +---)
2.x, x> and x3 are linked since you when x changes x? and x> must change
If x=1, then x?=1 and x3=1
If x=2, then x?=4 and x3=8
If x=3, then x?=9 and x3=27
3. Polynomials on the RHS allow the probability curve to:
0 Change directions as x increases
: a hill, a valley, or a snake
O Level off at values other than 1 or 0

4. This is how polynomials lead to nonlinearities...
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Top view of logit with x and x?

20
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Front view of logit with x and x?
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Side view of logit with x and x?
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Logit models for diabetes - #3
1.To address the nonparametric results, add age and age-squared to the model
2.To select the model

0 AIC and BIC to compare fits

0 Compare predictions and marginal effects

Fit models and store estimates

svy: logit diabetes c.age i.female i.ed4cat, or
est store dMagel // age

svy: logit diabetes c.age##c.age i.female i.ed4cat, or
est store dMage2 // age + age-squared

svy: logit diabetes c.age c.age#c.age c.age#c.age#c.age i.female i.ed4cat
est store dVMage3 // age + age-squared + age-cubed

estimates table dMagel dMage2 dMage3, title(diabetes) ///
eform b(%9.5F) p(%9.3F)
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Logit estimates for diabetes models

The coefficients provide little insight into which model to choose

Variable | dMagel dvage2 dMage3d
+
female |
female | 0.80854 0.81816 0.81815
| 0.000 0.000 0.000
ed4cat |
12 years | 0.66281 0.65679 0.65678
| 0.000 0.000 0.000
13-15 years | 0.54123 0.55383 0.55378
| 0.000 0.000 0.000
16+ years | 0.44993 0.45797 0.45794
| 0.000 0.000 0.000
|
age | 1.00656 1.29691 1.25235
| 0.003 0.000 0.511
c.age#c.age | 0.99819 0.99869
| 0.000 0.784
c.age#c.age# | 1.00000
c.age | 0.915
1
_cons | 0.25513 0.00004 0.00010
| 0.000 0.000 0.254
legend: b/p
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IC measures from non-svy model fitting - #3.2

1.Since IC measures are not defined with survey estimation, models are estimate
without adjusting for the complex sampling

| nosvyMl nosvym2 nosvyM3
+ ——
bic | 17569.00 17458.86 17467.79
aic | 17522.40 17404.50 17405.66

2. Results:
0 BIC gives M2 a 10 points advantage over M3
0 AIC gives M2 a 1 point advatntage over M3;
0 No support for M1

3.1C measures support M2
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How do the predictions compare? - #3.3

Women with a high school education

Pr(diabetes | age,X)

1
50 60 70 80 90 100
Age

— M1:age —-- M2:+age-squared ----- M3: + age-cubed
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Comparing DC(age+10) across models - #3.4

1. Does the effect of age differ across models?

ange  p-value td Err
| ch 1 Std E
+ _—
M1 ADC | 0.010** 0.003 0.003
M2 ADC | 0.004 0.206 0.003
M3 ADC | 0.003 0.335 0.003
M1 DCR@50 | 0.009** 0.002 0.003
M2 DCR@50 | 0.072*** 0.000 0.007
M3 DCR@50 | 0.071*** 0.000 0.017
M1 DCR@70 | 0.010** 0.004 0.003
M2 DCR@70 | -0.018*** 0.000 0.005
M3 DCR@70 | -0.018* 0.030 0.008
M1 DCR@90 | 0.011** 0.006 0.004
M2 DCR@90 | -0.070*** 0.000 0.004
M3 DCR@90 | -0.072*** 0.000 0.014
+

*<_.05; **<.01; ***<_001
2. Which model would you choose? Why is ADC misleading?
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Why ADC can be misleading g

Women with a high school education

Pr(diabetes | age.X)
2 3

1

— Mi:age —-- M2:+age-squared - M3 +age-cuted

M1: age only M2: age and age-squared

Density

o T T T ]

ADC
APr/A(age—age+10)

ADC
APr/A(age—age+10)
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Logit models for arthritis
Logit estimates for arthritis models - #4.1

Variable | aMagel aMage2 aMage3
female | 1.77543 1.80948 1.81087
| 0.000 0.000 0.000
ed4cat |
12 years | 0.82788 0.82101 0.82109
| 0.003 0.002 0.002
13-15 years | 0.77455 0.79218 0.79310
| 0.000 0.001 0.001
16+ years | 0.52825 0.53507 0.53543
| 0.000 0.000 0.000
|
age | 1.04844 1.35998 2.28835
| 0.000 0.000 0.002
c.age#tc.age | 0.99813 0.99076
| 0.000 0.014
c.age#c.age# | 1.00003
c.age | 0.043
|
_cons | 0.05711 0.00001 0.00000
| 0.000 0.000 0.000
legend: b/p
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Choosing a model
What does substantive research tell you?
Does Pr(arthritis | age)=1.0 make sense?

IC measures from non-svy model fitting

| nosvyMl nosvym2 nosvym3
+ .
bic | 22094.79 21909.34 21914.01
aic | 22048.19 21854.98 21851.89

0 BIC which prefers simpler models, points to M2
0 AIC which allows more complexity, points to M3
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How do the predictions compare?
_Women with a high school education

w
Q-
< T T T T 1
50 60 70 80 90 100
Age
—— M1:age —-- M2:+age-squared ----- M3: + age-cubed

The main differences between M2 and M3 occur beyond 90.
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Confidence intervals for predictions
The biggest differences occur where there is the least precision

Model 2: age + age-squared Model 3: age + age-squared + age-cubed

75
!
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5

Pr(arthritis | age,X)
\
Pr(arthritis | age,X)

25
!
25

50 60 70 80 90 100 50 60 70 80 90 100

0 The Cls beyond 90 overlap
0 Tools in Comparing Marginal Effects let you test if they are different
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What is the effect of age on arthritis?
1. Does the model affect the effect of age?
2. Which model would you choose? Is it time to consult a rheumatologist?

Change p-value Std Err

|

+ I
M1 ADC | 0.101*** 0.000 0.004
M2 ADC | 0.092*** 0.000 0.004
M3 ADC | 0.099*** 0.000 0.005
M1 DCR@50 | 0.116*** 0.000 0.005
M2 DCR@50 | 0.236*** 0.000 0.012
M3 DCR@50 | 0.278*** 0.000 0.025
M1 DCR@70 | 0.104*** 0.000 0.004
M2 DCR@70 | 0.056*** 0.000 0.005
M3 DCR@70 | 0.044*** 0.000 0.009
M1 DCR@90 | 0.063*** 0.000 0.001
M2 DCR@90 | -0.111*** 0.000 0.022
M3 DCR@90 | 0.004 0.932 0.047

+

*$.05; **$.01; ***<.001
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Code

Local polynomials
Ipoly diabetes age if age<100, gen(d_age d_poly) nograph n(200) bwidth(5)
label var d_poly "Diabetes"

IC measures
qui {
logit diabetes age i.female i.ed4cat, or
est store nosvyMl
logit diabetes c.age##c.age i.female i.ed4cat, or
est store nosvyM2
logit diabetes c.age c.age#c.age c.age#c.age#c.age i.female i.ed4cat
est store nosvyM3

estimates table nosvyaMagel nosvyaMage2 nosvyaMage3, ///
stats(bic aic) keep(age c.age#c.age c.age#c.age#tc.age) ///
b(%9.5F) p(%9.3F) stfmt(%9.2f)

Predictions for probability plots

est restore dMagel
mgen, at(age=(50(2.5)100) female=1 ed4cat=2) ///
atmeans stub(dM1l) replace

Plot command with Cl
est restore aMage3
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mgen, at(age=(50(2.5)100) female=1 ed4cat=2) /// predictions for plot
atmeans stub(aM3) replace
local graphname "arthritis-prob3CI™
graph twoway ///
(rarea aM3ul am3111 aMlage, color(gs13) lw(none)) /// shaded CI
(connected aM3prl aMlage, $M3line ) , ///
title(""Model 3: age + age-squared + age-cubed™, position(1l)
size(*.8)) ///
xtitle(""Age') x1ab(50(10)100) ///
$ytitlea $ylab yline(0 1, lIcol(black)) 77/
legend(off) $nogapnoline scale(1.1) ///
caption(*' graphname® ~tag"", $captionopt)
graph export “pgm®-~graphname”.$graphfmt, replace

Effects of age

estimates restore dMagel

mchange age, amount(delta) delta(10) stats(est se p)

mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=50)
mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=70)
mchange age, amount(delta) delta(10) stats(est se p) atmeans at(age=90)

estimates restore dMage2

How would you test if the effects differ across models?

Try to figure this out after Comparing Marginal Effects
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Summary of nonlinearities on the RHS
1. Always consider nonlinearities on the RHS
0 What are your substantive expectations?
0 Do not let the functional form of logit/probit dictate what you find
2.Nonlinearities on the RHS can create models where
0 Predictions do not plateau at 1
0 Predictions do not uniformly increase or decrease
0 Predictions are more linear or less linear the a “linear” logit
3. Starting with a nonparametric plot is often valuable

4. Compare the substantive implications of the model
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