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Abstract

In the presence of heteroscedasticity, OLS estimates are unbiased, but the
usual tests of significance are inconsistent. However, tests based on a het-
eroscedasticity consistent covariance matrix (HCCM) are consistent. While
most applications using a HCCM appear to be based on the asymptotic version
of the HCCM, there are three additional, relatively unknown, small sample
versions of the HCCM that were proposed by MacKinnon and White (1985),
based on work by Hinkley (1977), Horn, Horn and Duncan (1975), and Efron
(1982). Our objective in this paper is to provide more extensive evidence for
the superiority of a version of the HCCM known as HC3. Using Monte Carlo
simulations, we show that the most commonly used form of HCCM, known as
HC0, results in incorrect inferences in small samples. We recommend that the
data analyst should: a) correct for heteroscedasticity using HCCM whenever
there is reason to suspect heteroscedasticity; b) the decision to correct for het-
eroscedasticity should not be based on a screening test for heteroscedasticity;
and c) if the sample is less than 250, a small sample version of the HCCM
known as HC3 should be used.
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1 Introduction

It is well known that when the assumptions of the linear regression model are cor-

rect, ordinary least squares (OLS) provides efficient and unbiased estimates of the

parameters. Heteroscedasticity occurs when the variance of the errors varies across

observations. If the errors are heteroscedastic, the OLS estimator remains unbiased,

but becomes inefficient. More importantly, estimates of the standard errors are incon-

sistent. The estimated standard errors can be either too large or too small, in either

case resulting in incorrect inferences. Given that heteroscedasticity is a common

problem in cross-sectional data analysis, methods that correct for heteroscedasticity

are important for prudent data analysis.

Standard econometrics texts, such as Judge et al. (1985:422-445), consider a va-

riety of methods that can be used when the form and magnitude is known or can

be estimated. Essentially, these methods involve weighting each observation by the

inverse of the standard deviation of the error for that observation. The resulting

coefficient estimates are efficient and unbiased, with unbiased estimates of the stan-

dard errors of the coefficients. Unfortunately, the form of heteroscedasticity is rarely

known, which makes this solution generally impractical.

When the form of heteroscedasticity is unknown, the heteroscedasticity consistent

covariance matrix, hereafter HCCM, provides a consistent estimator of the covariance

matrix of the slope coefficients in the presence of heteroscedasticity. Theoretically,

the use of HCCM allows a researcher to avoid the adverse effects of heteroscedasticity

on hypothesis testing even when nothing is known about the form of the heteroscedas-

2



ticity. This powerful result, which was introduced to econometricians with White’s

(1980) classic paper, can be traced to the work of Eicker (1963, 1967), Huber (1967),

Hartley, Rao and Keifer (1969), Hinkley (1977), and Horn, Horn, and Duncan (1975).

White’s (1980) paper presented the asymptotically justified form of the HCCM,

referred to hereafter as HC0. In a later paper, MacKinnon and White (1985) raised

concerns about the performance of HC0 in small samples, and presented three al-

ternative estimators known as HC1, HC2, and HC3. While these estimators are

asymptotically equivalent to HC0, they were expected to have superior properties in

finite samples. To assess the small sample behavior of these alternatives, MacKinnon

and White performed Monte Carlo simulations and concluded by recommending that

HC3 should be used. MacKinnon and White designed their simulations to keep the

X0X/N matrix constant in all replications, regardless of sample size. While this had

the advantage of eliminating one source of variation that might affect the results,

subsequent work by Chesher and colleagues (Chesher and Jewitt 1987; Chesher 1989;

Chesher and Austin 1991) demonstrated that characteristics of the design matrix

critically affect the properties of HCCMs. Chesher and Austin (1991) showed that

the data used by MacKinnon and Davidson had one observation with high leverage.

When this observation was removed and the simulations were repeated, they found

that all versions of the HCCM performed well.

As shown in Section 2, researchers and software vendors are either unaware about

concerns with the small sample properties of HC0 or are not convinced by the Monte

Carlo evidence that has been provided. Our objective in this paper is to provide

far more extensive and, hopefully, convincing evidence for the superiority of a com-
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putationally simple form of HC3. While no Monte Carlo simulation can cover all

variations that might influence the properties of the statistic being studied, our sim-

ulations are designed to enhance our understanding in several important ways. First,

by sampling from a population of independent variables, we allow substantial vari-

ation among samples in the presence of points of high leverage. Second, we have

included a greater range of error structures, including skewed and fat-tailed errors,

and additional types of heteroscedasticity not considered in earlier simulations. Such

errors structures are likely to be common in cross-sectional research. Third, rather

than using the computationally more demanding jackknife estimator (HC3) suggested

by MacKinnon and White, we consider the properties of a computationally simpler

approximation suggested by Davidson and MacKinnon (1993:554). Fourth, our sim-

ulations include results with samples that range from 25 through 1000. And finally,

we provide Monte Carlo evidence regarding the effects of using a test of heteroscedas-

ticity to determine whether an HCCM correction should be used. Our conclusions

suggest that data analyst should change the way in which they use heteroscedasticity

consistent standard errors to correct for heteroscedasticity.

We begin in Section 2 by assessing current practice in using HCCMs. Section

3 reviews the effects of heteroscedasticity and presents four versions of the HCCM.

Section 4 describes our Monte Carlo simulations, and Section 5 presents the results

of our simulations. We conclude by making recommendations for how the HCCM

should be used.
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2 Assessing Current Practice

MacKinnon andWhite’s recommendation against using HC0 in small samples is either

unknown or the justification is unconvincing to most researchers and software vendors.

Our conclusion is based on several sources of information.

First, White’s (1980) original paper presenting HC0 is highly cited, while the

paper by MacKinnon and White (1985) that presents small sample versions receives

few citations. For papers published in 1996, Social Science Citation Index lists 235

citations to White (1980). Only eight citations were made to MacKinnon and White

(1985), with six of these in methodological papers.

Second, we found only two statistics texts that discuss the small sample properties

of HC0. The first is MacKinnon and Davidson (1993:554) which strongly recommends

against using HC0 (“As a practical matter, one should never use [it]...”) and suggest

either HC2 or HC3. The second is Greene (1997), which dismisses MacKinnon and

Davidson’s advice as too strong. Other recent texts that discuss HC0 neither mention

the small sample problems with HC0 nor discuss the alternative forms. These include:

Amemiya 1994; Fox 1997; Goldberger 1991; Greene 1990, 1993; Gujarati 1995; Judge

et al. 1985; and Maddala 1992.

Third, we reviewed 11 statistical packages, including a range of general and spe-

cialized packages. For each package, we examined the documentation, the on-line

help, information on the vendor’s Web site, and sometimes contacted technical sup-

port. To verify which versions of the HCCM were included, we compared the output

from each package to known results. Our findings are summarized in Table 1. HC0
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Package Version HC0 HC1 HC2 HC3

BMDP 7 N N N N

GAUSS 3.2 D P P P

GLIM 4 N N N N

LIMDEP 7 D P P P

Microfit 4 N D N N

Minitab 11 N N N N

SAS 6.11 D P P P

SPSS 7.5 N N N N

Systat 7 N N N N

Stata 4 D Y Y Y

Stata 5 Y D Y Y

TSP 4.4 Y Y D Y

Note: Y=yes; D=default option; N=not available;

P=can be programmed with matrix language.

Table 1: Types of Heteroscedasticity Consistent Covariance Matrices Estimated by

Statistical Packages that Estimate the Linear Regression Model.

is the most common and often the only form of the HCCM estimated. Significantly,

the popular SPSS has no correction, and SAS includes only HC0. HC2 and HC3 were

available without extra programming only in Stata and TSP. Still, TSP made HC2

the default, while Stata used HC1. HC2 and HC3 could be programmed using matrix

capabilities in GLIM, GAUSS, SAS and LIMDEP.1 Overall, even though it is quite

simple to program HC2 and HC3, these methods are not available in most statistical

packages, and are the default in only one, fairly specialized package.

1LIMDEP includes sample matrix programs for HC2 and HC3. When we tested these programs,

we found that the resulting estimates agreed with those from Stata and TSP only to 2 decimal

places. This suggests that users who write their own programs for HC2 and HC3 need to be careful

that there is not a loss of precision due to rounding error.
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Fourth, we used Social Science Citation Index to find all 1996 articles in the social

sciences that cited either White (1980) or MacKinnon and White (1985). Since the

majority of the 240 articles in the list were in business and economics, we selected all

of the articles from psychology, political science, and sociology, plus a small number of

articles from economics. While our list does not include articles that used HCCM tests

but cited other sources, such as a textbook in econometrics, it should be representative

of applications of HCCMs. Of the 32 articles reviewed, 26 used HC0, one article used

HC2, four articles examined results using HCCM and decided to use tests based

on the standard OLS covariance matrix, and in one article the method could not

be determined. Based on the conclusions we present in Section 5, nearly half of

the papers using HC0 had samples that are small enough to lead to significant size

distortion.2

These results support our conclusion that current practice in correcting for het-

eroscedasticity with HCCMs relies heavily on HC0, and consequently may be seriously

flawed.

3 The Linear Regression Model

The linear regression model for the ith observation can be written as

yi = β1 + β2xi2 + · · ·+ βkxik + · · ·+ βKxiK + εi
2Of the 26 articles using HC0, 15 percent had samples less than 50; 27 percent samples less than

100; 35 percent samples less than 120; and 46 percent had samples less than 250; and 54 percent

had samples less than 500.
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where y is the dependent variable, the x’s are independent variables, and ε is the

error in equation. β2 through βK are parameters that indicate the effect of a given x

on y; β1 is the intercept. In matrix notation:

y = Xβ + ε

where y and ε are N × 1 matrices, X is N ×K, and β is K × 1. For the ith row of
X, we can write

yi = xiβ + εi

The following assumptions complete the model:

1. Linearity: y is linearly related to the x’s through the β parameters.

2. Collinearity: The x’s are not linearly dependent.

3. Expectation of ε: E (εi | xi) = 0 for all i.

4. Homoscedasticity: For a given xi, the errors have a constant variance: Var(εi | xi) =
σ2 for all i.

5. Uncorrelated errors: For two observations i and j, the covariance between εi

and εj is zero.

With these assumptions, the OLS estimator bβ = (X0X)−1X0y has the covariance

matrix:

Var
³bβ´ = (X0X)−1X0ΦX (X0X)−1 (1)
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where Φ is a diagonal matrix with φii =Var(εi). When the errors are homoscedastic,

Φ can be written as Φ = σ2I. With this assumption, Equation 1 can be simplified:

Var
³bβ´ = (X0X)−1X0 ¡σ2I¢X (X0X)−1 (2)

= σ2 (X0X)−1X0X (X0X)−1

= σ2 (X0X)−1

Defining the residuals ei = yi−xibβ, we can estimate the usual OLS covariance matrix,
hereafter referred to as OLSCM, as:

OLSCM =

P
e2i

N −K (X0X)−1 = s2 (X0X)−1

If the errors are heteroscedastistic, then OLSCM is biased and the usual tests of

statistical significance are inconsistent. When Φ is known, Equation 1 can be used to

correct for heteroscedasticity. Unfortunately, the form of heteroscedasticity is rarely

known. When Φ is unknown, we need a consistent estimator of Φ in order to apply

Equation 1. The HCCM is based on the idea that e2i can be used to estimate φii. This

can be thought of as estimating the variance of the error using a single observation:

bφii = (ei − 0)2 /1 = e2i . Then, let bΦ =diag[e2i ] , which results in the estimator:
HC0 = (X0X)−1X0 bΦX (X0X)−1 (3)

= (X0X)−1X0diag
£
e2i
¤
X (X0X)−1

This estimator is referred to variously as the White, Eicker, or Huber estimator. It

is also called the sandwich estimator since X0 bΦX is “sandwiched” between a pair of

(X0X)−1’s. As shown by White (1980) and others, HC0 is a consistent estimator of

Var
³bβ´ in the presence of heteroscedasticity of an unknown form.
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MacKinnon and White (1985) consider alternative estimators designed to improve

on the small sample properties of HC0. To understand the motivation for these alter-

natives, we need to consider basic results from the analysis of outliers and influential

observations (see, for example, Belsley et al. 1980:13-19; Greene 1997:444-445). Re-

call that bΦ in Equation 3 is based on the OLS residuals e, not the errors ε. Even if

the errors ε are homoscedastistic, the residuals e will not be. Specifically, if we define

hii = xi (X
0X)−1 x0i, then:

Var (ei) = σ
2 (1− hii) 6= σ2 (4)

Since 0 ≤ hii ≤ 1 (Belsley et al. 1980:13-19), Var(ei) will underestimate σ2. Further,

since Var(ei) varies across observations when the errors are homoscedastistic, the OLS

residuals must be heteroscedastistic.

With these results in hand, it is simple to motivate three variations on HC0.

The simplest adjustment, suggested by Hinkley (1977), makes a degrees of freedom

correction that inflates each residual by a factor of
p
N/ (N −K), where K is the

number of β’s. With this correction, we obtain the version of the HCCM known as

HC1:

HC1 =
N

N −K (X0X)−1X0diag
£
e2i
¤
X (X0X)−1 =

N

N −KHC0

The second variation is based on the idea that while e2i is a biased estimator of

σ2i , Equation 4 suggests that e
2
i / (1− hii) will be a less biased estimator. This led

MacKinnon and White (1985), based on work by Horn, Horn and Duncan (1975), to

suggest the estimator:

HC2 = (X0X)−1X0diag
·

e2i
1− hii

¸
X (X0X)−1

10



A third variation, also suggested by MacKinnon and White (1985), approximates

a more complicated jackknife estimator of Efron (1982, as cited by MacKinnon and

White 1985):

HC3 = (X0X)−1X0diag
·

e2i
(1− hii)2

¸
X (X0X)−1

Since 0 ≤ hii ≤ 1, dividing e2i by (1− hii)2 further inflates e2i .

4 Monte Carlo Experiments

We used Monte Carlo simulations to examine the small sample behavior of OLSCM

tests and tests based on the four versions of the HCCM presented above. Our experi-

ments simulate a variety of data and error structures that are likely to be encountered

in cross-sectional research. To this end, we considered errors that were skewed and

fat-tailed, as well as normal errors. The effects of the variance of the errors was ex-

amined by considering simulations with R2’s ranging from .2 to .7. The independent

variables were constructed with a variety of distributions, including uniform, bell-

shaped, skewed, and binary. The effects of the scale of the independent variable were

examined by also running simulations using variables normalized to a unit variance.

Finally, a variety of different forms and degrees of heteroscedasticity were considered.

Each simulation involved the following steps:

1. Independent variables: 100,000 observations for five independent variables were

constructed and saved to disk. The independent variables were constructed to

include a variety of distributions.
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2. Errors: A variety of error structures were chosen to represent common types of

homoscedasticity and heteroscedasticity. 100,000 observations were generated

for each error type.

3. Dependent variables: The dependent variable was constructed as a linear com-

bination of three of the five independent variables plus the error term. The

combination of the independent variables, the error, and the dependent vari-

able made up the population for each structure.

4. Simulations: From each population, a random sample without replacement was

drawn. Since a different random sample is used for each replication, the design

matrix will vary. Regressions were estimated and tests of hypotheses were com-

puted for each sample. This was done 1,000 times each for sample sizes of 25,

50, 100, 250, 500, and 1, 000.

5. Summary: The results were summarized across the 1,000 replications for each

sample size from each population.

Details of our simulations are now given.

4.1 Data Structures

The first step was to generate 100, 000 observations for five independent random

variables with the following distributions:

δ1 ∼ Uniform (0, 1) δ2 ∼ Normal (0, 1)

δ3 ∼ χ21df δ4 ∼ Normal (0, 1)

δ5 ∼ Uniform (0, 1)
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The δ’s were combined to construct the four independent variables:

x1 = 1 + δ1 x2 = 3δ1 + .6δ2

x3 = 2δ1 + .6δ3 x4 = .1δ1 + .9δ3 − .8δ4 + 4δ5
A dummy variable xD was then created by splitting x2:

xD =

½
1 if x2 > 1.6
0 if x2 ≤ 1.6

The five x’s have the following characteristics:

x Distribution Minimum Maximum µ σ

x1 Uniform. 1.00 2.00 1.50 0.29

x2 Bell-shaped. -2.24 5.10 1.50 1.05

x3 Skewed. 0.00 12.13 1.60 1.03

x4 Bell-shaped. -2.28 15.28 3.59 1.69

xD Binary 0 1 0.47 0.50

Note that x3 is skewed, which should increase the likelihood that a sample will include

points of moderate to high leverage.

Since the same δ’s were combined with different weights to create the x’s, there are

varying degrees of collinearity among the variables. Specifically, the x’s are correlated

as follows:

r x1 x2 x3 x4 xD

x1 1.00

x2 0.82 1.00

x3 0.56 0.46 1.00

x4 0.32 0.27 0.56 1.00

xD 0.73 0.82 0.41 0.23 1.00

In addition, standardized variables xs1 through x
s
4, with mean 0 and variance 1, were

constructed from the corresponding xk’s.
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A variety of error structures were used to represent different types of homoscedas-

ticity and heteroscedasticity that might be found in real data. First, we created three

types of homoscedastistic errors:

εNi ∼ Normal (0, 1)

εXi ∼ χ25df
εti ∼ t5df

εXi is slightly skewed, with skewness and excess kurtosis parameters of
p
8/5 and

12/5. εti is not skewed, but has excess kurtosis of 6 (i.e., “fat” tails). These errors

were combined with the independent variables using:

Model 1: yi = 1 + 1x1i + 1x2i + 1x3i + 0x4i + τεi

x4 is included with a coefficient of 0 to examine significance tests in the presence of

inclusion error. The constant τ is used to determine the R2 for the model.

Heteroscedasticity was introduced by allowing the variance of the errors to depend

on the independent variables as shown in Table 2. This resulted in 11 heteroscedastic

error structures which were represent various degrees and types of heteroscedasticity

that might be found in practice. The first column of the table gives a simple mnemonic

for referring to each structure. Within the mnemonic, the numbers refer to the xk’s

that are linked to the error variance; D refers to a link to xD; N refers to normally

distributed errors, and X refers to χ2 errors. For example, 34N indicates normally

distributed heteroscedastistic errors where the skedasticity function includes x3 and

x4. Since early experiments showed little differences when t-distributed errors were

used, results from these simulations are not reported.

14



Error Error Skedasticity Structural

Structure Distribution Function Model

1N Normal εi =
√
xi1εNi 1

1X χ25 εi =
√
xi1εXi 1

3N Normal εi =
√
xi3 + 1.6εNi 1

3X χ25 εi =
√
xi3 + 1.6εXi 1

3Xeq χ25 εi =
√
xi3 + 1.6εXi 3

34N Normal εi =
√
xi3
√
xi4 + 2.5εNi 1

34X χ25 εi =
√
xi3
√
xi4 + 2.5εXi 1

123N Normal εi =
√
xi1
√
xi2 + 2.5

√
xi3εNi 1

123X χ25 εi =
√
xi1
√
xi2 + 2.5

√
xi3εXi 1

DsmN Normal εi =

(
1.5εNi if xiD = 1

εNi if xiD = 0
2

DbigN Normal εi =

(
4εNi if xiD = 1

εNi if xiD = 0
2

Table 2: Forms of Heteroscedasticity Used in the Simulations.

In most cases, the errors were combined with the independent variables using

Model 1. However, in some cases, as noted in Table 2, two additional structural

models were used:

Model 2: yi = 1 + 1x1i + 1xDi + 1x3i + 0x4i + τεi

Model 3: yi = 1 + 1x
s
1i + 1x

s
2i + 1x

s
3i + 0x

s
4i + τεi

Model 2 was used to determine if the results were affected by the inclusion of a

dummy independent variable. Model 3 was used to assess the effect of the variance

of the independent variables. To anticipate our findings, these two variations did not

affect our overall conclusions. For each combination of structural model and error,

we chose τ so that the R2 in the population was approximately .4.While simulations

with R2’s ranging from .2 to .7 were run, the findings were so similar that we present
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only results for R2 = .4.

Table 3 reports results of two methods of assessing the degree of heteroscedasticity.

First, we sorted the 100,000 observation in the population by a given xk, and then

computed the ratio of the standard deviation of the errors in the 85th to 95th percentile

to the standard deviation of the errors in the 5th to 15th quantile. We excluded the

upper and lower 5th percentiles to eliminate the effects of extreme observations. The

larger the ratio, the more heteroscedasticity. This measure was computed after sorting

by each of the independent variables. In some cases, such as error structure 34N, there

is substantial evidence for heteroscedasticity when the data is sorted on x3, but much

less evidence with respect to the other x’s. Second, we computed the percent of

times out of 1,000 replications that the Breusch-Pagan test for heteroscedasticity was

statistically significant at samples sizes of 25, 50 and 100. The larger the percentage,

the greater the evidence for heteroscedasticity. Notice that the Breusch-Pagan test

is more likely to detect heteroscedasticity when the errors have a χ2 distribution. As

noted by Long and Trivedi (1992), the Breusch-Pagan test is sensitive to departures

from normality as well as departures from homoscedasticity.

5 Monte Carlo Results

Each method of computing the covariance matrix is assessed by calculating the empir-

ical size and power of t-tests for the β parameters. For size, we compare the nominal

significance level to the proportion of times that the correct H0 is rejected over the

1,000 replications at a given sample size. The true hypothesis is H0: βk = β
∗
k, where
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Ratio of Standard Deviations

for the 85-95 Percentile % Rejected by Breusch-

Error to the 5-15 Percentile Average Pagan Test at .05 Level

Structure x1 x2 or xD x3 x4 Ratio N = 25 N = 50 N = 100

1N 1.3 1.2 1.2 1.1 1.2 .08 .16 .22

1X 1.3 1.2 1.2 1.1 1.2 .20 .33 .41

3N 1.3 1.2 1.5 1.2 1.3 .10 .23 .42

3X 1.3 1.2 1.5 1.3 1.3 .20 .37 .51

34N 1.9 1.6 3.0 2.2 2.2 .34 .75 .97

34X 1.9 1.6 3.1 2.2 2.2 .39 .77 .97

123N 3.1 2.7 3.7 1.7 2.8 .43 .87 .99

123X 3.1 2.7 3.8 1.8 2.8 .50 .86 .99

DsmN 1.5 1.9 1.3 1.2 1.5 .04 .12 .32

DbigN 3.6 5.1 2.6 1.4 3.2 .31 .87 1.00

Table 3: Degree of Heteroscedasticity for Ten Error Structures.

β∗k is the population value determined from the regression based on the entire 100,000

observations. For power, the empirical significance level is the proportion of times a

false hypothesis was rejected over 1,000 replications at a given sample size. For β1,

β2, and β3, we assess power by testing the false hypothesis: H0: βk = #. For the

tables and figures below, we consider H0: βk = 0. Power curves for values from two

below to two above the population value were also computed and are summarized

where appropriate. While size and power were examined at the .05 and .10 nominal

levels, the findings were similar so only results for the .05 level are presented.

5.1 Results for Homoscedastistic Errors

Figure 1 illustrates the problems associated with using heteroscedasticity adjustments

with homoscedastic χ25 errors. The horizontal axis indicates the size of the sample
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Figure 1: Size and Power of t-tests of β3 for Homoscedastistic χ
2
5 Errors.

used in the simulation; the vertical axis indicates the proportion of times that the

true null hypothesis H0: β3 = β
∗
3 was rejected out of 1,000 replications. The nominal

significance level is indicated by a horizontal line at .05. The proportion of times

that the null hypotheses is rejected using tests based on the standard OLSCM are

indicated by ¤’s; the proportion rejected by each type of HCCM are indicated by

numbers: 0 for HC0, 1 for HC1, and so on.

There are several key results regarding size that also hold for other forms of

homoscedasticity, as discussed below):

1. Tests based on OLSCM have the best size properties, as would be expected given

that the errors are homoscedastistic. Note that this holds for homoscedastistic

errors that are not normal.

2. The size properties of tests based on HC3 are nearly as good as those for OLSCM

tests, even at N = 25.

3. Tests based on HC0, HC1 and HC2 show significant size distortion for N ≤ 100,
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with distortion increasing from HC2 to HC1 to HC0. All three version have size

properties very similar to OLSCM tests for N ≥ 250.

The right panel of Figure 1 shows the power of the various tests for the false

hypothesis H0: β3 = 0. OLSCM and HC3 have similar power, but their ability to

reject a false hypothesis is somewhat less than tests based on HC0, HC1 and HC2.

However, if the power for HC0, HC1 and HC2 is adjusted for their tendency to over-

reject (as shown in the size results), their power advantage is reduced by about half.

Power curves (not shown) for tests that β3 has values ranging from two below to two

above the true value show that the results in Figure 1 hold for other hypotheses.

Table 4 summarizes the size results from the homoscedastistic data structures

that we examined. The three panels correspond to χ25, normal, and t5 distributed

errors. Within each panel, the rows indicate the type of covariance matrix used,

while the columns indicate the sample size used in the simulations. The cells of the

table were constructed as follows. For each combination of method, sample size, and

error distribution, the nominal alpha of .05 was subtracted from the percent of times

out of 1,000 replications that the true hypothesis was rejected. The mean deviation

across the four β’s is given in the table. For example, .051 (shown in bold) for HC0 at

N = 25 with χ25 errors indicates that on average tests based on HC0 rejected the true

hypothesis 51 times more per 1, 000 tests than indicated by the nominal significance

level.

Overall, the greatest size distortion is seen for HC0 with small samples. AtN = 25,

HC0 rejects the true null hypothesis over twice as often as it should. HC1 cuts the size

distortion in half, and HC2 and HC3 have distortion of less than .02. By N = 100,
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Sample Size

Panel 1: χ25 25 50 100 250 500 1, 000

OLSCM -.005 -.006 -.006 -.001 .008 .002

HC0 .051 .022 .009 .003 .011 .003

HC1 .023 .011 .003 .002 .010 .002

HC2 .014 .005 -.002 -.001 .009 .001

HC3 -.019 -.010 -.009 -.004 .008 .000

Panel 2: N 25 50 100 250 500 1, 000

OLSCM .004 .002 .000 .004 -.003 -.002

HC0 .057 .031 .016 .011 .001 .000

HC1 .027 .020 .009 .009 .000 -.001

HC2 .019 .014 .005 .007 -.002 -.001

HC3 -.013 -.003 -.002 .004 -.003 -.001

Panel 3: t5 25 50 100 250 500 1, 000

OLSCM -.001 -.003 -.001 .002 -.003 -.005

HC0 .058 .022 .013 .005 .001 -.004

HC1 .025 .008 .006 .004 -.001 -.005

HC2 .015 .003 .003 .002 -.001 -.006

HC3 -.018 -.011 -.006 -.001 -.002 -.007

Table 4: Mean Difference between Nominal and Empirical Size for Homoscedastistic

Errors.

the properties of the HCCM tests are nearly identical to those using OLSCM, with

the exception of HC0. By N = 1, 000, the results from all types of tests are nearly

indistinguishable. Thus, for tests with samples of 250 or more, there is very little

distortion introduced by using any of the HCCM based tests when the errors are

homoscedastistic.

5.2 Results for Heteroscedastistic Errors

While OLSCM is superior to the HCCM based tests when errors are homoscedastis-
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Figure 2: Size of t-test for χ25 Errors with Heteroscedasticity Associated with x3.

tic, in the presence of heteroscedasticity OLSCM tests are biased. This is illustrated

in Figure 2 which shows the results of testing a true hypothesis when the errors are

χ25 with the scedasticity function: εi = τ
√
xi3 + 1.6 εXi. This error structure, referred

to as 3X in Table 2, has a moderate amount of heteroscedasticity that is associated

most strongly with x3.

The four panels of Figure 2 correspond to tests of the four βk’s. While the findings

in this figure are for a single error structure, they are representative of the results for

other heteroscedastistic structures as shown later in the paper. The key points are:

1. The degree to which OLSCM tests are biased varies across parameters. Thus,

the OLSCM tests show a great deal of distortion with respect to β3, limited
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distortion for β1, and no problems for β2 and β4.

2. When size distortion is found for OLSCM tests, it does not decrease as the

sample size increases. For example, the empirical size for the OLSCM test of

β3 increases to nearly .15 as the sample increases.

3. For N ≤ 100, OLSCM tests do as well or better than HC0 and HC1 tests.

4. HC3 is superior for tests of coefficients that are most affected by heteroscedas-

ticity (e.g., β3).

Table 5 summarizes the size results for seven error structures. In Panels 1 through

5 the corresponding results for normal errors are very similar to those presented for χ25

errors, and have not been shown. Again, each cell in the table contains the deviation

from the nominal significance level .05 averaged across the four β’s. We conclude:

1. For N ≤ 50, tests using OLSCM always do better than tests based on HC0,

and generally do as well or better than tests using HC1.

2. With milder forms of heteroscedasticity (e.g., 1X, 3X, DsmN), tests using OLSCM

work quite well for all sample sizes.

3. With more extreme forms of heteroscedasticity, OLSCM tests have size distor-

tion that increases with sample size (e.g., 3Xeq, 34X, 123X).

4. For N ≥ 500, there is little difference among tests using different forms of the

HCCM.
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Error Sample Size
Structure Method 25 50 100 250 500 1, 000

Panel 1: 1X OLSCM .003 .003 .000 .006 -.002 .001
HC0 .063 .032 .011 .014 .003 .003
HC1 .027 .018 .007 .011 .001 .003
HC2 .016 .011 .004 .010 -.001 .003
HC3 -.016 -.004 -.007 .006 -.003 .002

Panel 2: 3X OLSCM .010 .010 .016 .023 .018 .021
HC0 .054 .034 .020 .013 .009 .002
HC1 .023 .020 .013 .011 .008 .002
HC2 .009 .011 .007 .009 .007 .000
HC3 -.022 -.006 -.001 .005 .004 -.001

Panel 3: 3Xeq OLSCM .015 .030 .036 .044 .036 .044
HC0 .070 .046 .033 .018 .008 .010
HC1 .037 .033 .025 .016 .007 .010
HC2 .025 .025 .020 .014 .006 .008
HC3 -.010 .003 .008 .008 .001 .007

Panel 4: 34X OLSCM .026 .030 .046 .047 .047 .053
HC0 .078 .038 .034 .012 .007 .004
HC1 .043 .024 .028 .009 .006 .003
HC2 .024 .013 .020 .006 .004 .001
HC3 -.014 -.007 .005 .001 .001 -.001

Panel 5: 123X OLSCM .020 .023 .027 .030 .028 .036
HC0 .070 .045 .022 .008 .003 .008
HC1 .032 .032 .016 .004 .002 .007
HC2 .016 .021 .011 .003 .000 .005
HC3 -.015 .001 .000 -.004 -.002 .005

Panel 6: DsmN OLS .002 -.006 .001 -.007 -.001 .000
HC0 .071 .023 .018 .003 -.001 .003
HC1 .033 .009 .012 .000 -.002 .002
HC2 .024 .002 .007 -.003 -.003 .002
HC3 -.007 -.012 -.003 -.008 -.005 .001

Panel 7: DbigN OLS .006 -.003 -.001 -.005 -.002 -.002
HC0 .053 .023 .015 .006 .002 -.004
HC1 .020 .010 .008 .004 .001 -.004
HC2 .011 .003 .004 .002 .000 -.004
HC3 -.019 -.016 -.007 -.003 -.002 -.005

Table 5: Mean Deviations from Nominal Significance for Various Forms of Het-
eroscedastistic Errors.
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5. For N ≤ 250, tests based on HC3 perform the best, although HC2 tests work

nearly as well.

It is important to keep in mind that the results in Table 5 summarize the size

properties across all four β’s. As illustrated in Figure 2, however, the effects of

heteroscedasticity can vary greatly across coefficients. This point is demonstrated

more fully in Table 6 which presents size distortion for tests of β3. Recall that the

data structures were designed so that heteroscedasticity was most strongly associated

with x3, and x3 is most highly skewed which may increase the chance of having points

of high leverage. Several key results emerge:

1. Size distortion for OLSCM tests is much worse for tests of β3 than for the other

β’s.

2. The poor size properties for HC0 and HC1 tests are greater for tests of β3 than

for other coefficients.

3. HC3 tests are superior to HC2 tests in nearly all cases.

Figure 3 presents the power curves for tests of H0: β1 = 0 and H0: β3 = 0 for

heteroscedastistic χ25 errors associated with x3 and x4. This figure reflects several key

results that are also found with other data structures and for testing other hypotheses

(results not included):

1. Tests based on the OLSCM are most powerful, but this is because of the sig-

nificant size distortion of these tests. For N ≥ 250, the size adjusted power is

smaller for the OLSCM tests than for other tests.
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Error Sample Size
Structure Method 25 50 100 250 500 1, 000

Panel 1: 1X OLSCM .012 .007 .004 .007 .002 .008
HC0 .086 .062 .018 .027 .010 .007
HC1 .044 .048 .011 .025 .007 .006
HC2 .030 .029 .009 .022 .006 .006
HC3 -.007 .003 -.006 .016 .005 .005

Panel 2: 3X OLSCM .044 .035 .048 .086 .054 .073
HC0 .111 .067 .039 .040 .019 .016
HC1 .065 .054 .028 .036 .017 .016
HC2 .037 .035 .016 .031 .016 .012
HC3 -.006 .011 .001 .021 .009 .011

Panel 3: 3Xeq OLSCM .069 .105 .114 .130 .131 .152
HC0 .144 .101 .077 .038 .021 .033
HC1 .105 .085 .069 .036 .020 .033
HC2 .079 .067 .061 .031 .019 .028
HC3 .020 .030 .042 .021 .014 .023

Panel 4: 34X OLSCM .096 .111 .153 .173 .167 .188
HC0 .160 .095 .081 .043 .018 .019
HC1 .121 .076 .074 .039 .017 .018
HC2 .075 .048 .054 .034 .014 .015
HC3 .016 .014 .033 .025 .010 .011

Panel 5: 123X OLSCM .074 .065 .095 .101 .111 .118
HC0 .148 .091 .063 .023 .014 .010
HC1 .100 .078 .055 .020 .013 .009
HC2 .072 .057 .040 .015 .009 .004
HC3 .019 .035 .026 .004 .007 .003

Panel 6: DsmN OLSCM .004 -.009 -.012 -.001 .005 .000
HC0 .076 .038 .021 .024 .007 .005
HC1 .039 .021 .018 .021 .006 .005
HC2 .021 .008 .010 .015 .003 .005
HC3 -.007 -.008 -.009 .002 -.001 .003

Panel 7: DbigN OLSCM .014 .003 .003 -.002 -.006 .002
HC0 .084 .018 .017 .016 -.007 -.002
HC1 .045 .004 .008 .015 -.007 -.003
HC2 .022 -.003 -.003 .012 -.010 -.003
HC3 -.018 -.026 -.013 .004 -.010 -.004

Table 6: Deviation from Nominal Significance for Tests of β3 for Various Forms of
Heteroscedastistic Errors.
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Figure 3: Power of t-test of β1 and β3 for χ
2
5 Errors with Heteroscedasticity Associated

with x3 and x4.

2. HC3 tests are the least powerful of the HCCM tests, followed by HC2 and HC1.

These differences are largest for tests of β3. However, after adjusting the power

for size distortion, these differences are greatly reduced.

3. For N ≥ 250, there are no significant differences in the power of tests based on
different forms of the HCCM.

5.3 Screening for Heteroscedasticity

Before making our recommendations on how the data analyst should correct for het-

eroscedasticity, we review what happens if one begins by screening for heteroscedas-

ticity. Applied papers often state that since a model failed to pass a test for het-

eroscedasticity, HCCMs were used. Our review in Section 2 found that 37 percent of

the articles stated that they used a test for heteroscedasticity to determine whether

HCCM tests should be used. And, it is likely that other authors used screening tests

but did not report them. To determine the consequences of this procedure, we ran
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the following simulations:

1. Compute a White test for heteroscedasticity.

2. If the test is significant at the .05 level, use a HCCM based test; if the test is

not significant, use the OLSCM test.

The White (1980) test is computed by regressing the squared residual, e2i , on

a constant plus the original x’s, their squares, and the cross-products. The White

statistic is W = NR2, where R2 is the coefficient of determination. If the errors are

homoscedastistic, W is distributed as χ2 with degrees of freedom equal to the number

of regressors in the auxiliary regression, excluding the constant. A significant value

of W leads to the rejection of the null hypothesis of homoscedasticity. We chose the

White test since we found it referred to most frequently in applied papers, but we

obtained similar results using the Glejser (1969) and Breush and Pagan (1979) tests.

Figure 4 shows the effects of screening when the heteroscedastistic errors are χ25

and associated with x3 and x4. The left panel shows the results of the White test

that was used to screen for heteroscedasticity. Notice that the test has low power

for small samples. The right panel shows the size properties of various tests of H0:

β3 = β
∗
3 , where β

∗
3 is the population value. The results of the standard OLSCM test

are shown with ¤’s; the results of HC3 tests applied regardless of the result of the

screening test are shown with 4’s. The numbers correspond to the type of HCCM

used in the two-step procedure. For example, 3’s plot the results when HC3 tests

were used when the White test detected heteroscedasticity, otherwise OLSCM tests

were used.
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Figure 4: Size and Power of t-tests of β3 after Screening with a White Tests at the
.05 Level, Using Heteroscedastistic χ25 Errors Associated with x3 and x4.

Since the White test has less power in small samples, the two-step process will

use OLSCM tests more frequently when N is smaller. Consequently, for small N ’s

tests based on screening will have similar size properties to the standard OLSCM

test. As N increases and the power of the screening test increases, the size of the

two-step tests converge to those of HC3 tests. The overall conclusion is clear: a

test for heteroscedasticity should not be used to determine whether HCCM based tests

should used. Far better results are obtained by using HC3 all of the time.

6 Summary and conclusions

In this paper, we explored the small sample properties of four versions of the HCCM

in the linear regression model. While no Monte Carlo can represent all possible

structures that can be encountered in practice, the consistency of our results across

a wide variety of structures adds credence to our suggestions for the correction of

heteroscedasticity:
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1. If there is any reason to suspect that there is heteroscedasticity, tests using

HCCMs should be used.

2. If the sample is less than 250, the form of HCCM known as HC3 should be used;

when samples are 500 or larger, other versions of the HCCM can be used. The

superiority of HC3 over HC2 lies in its better properties in the most extreme

cases of heteroscedasticity.

3. The decision to correct for heteroscedasticity should not be based on the results

of a screening test for heteroscedasticity.

Given the trade-off between correcting for heteroscedasticity with HC3 when there

is homoscedasticity and the size distortion of tests based on the OLSCM when there

is heteroscedasticity, we recommend that tests based on HC3 should be used tests of

individual coefficients in the linear regression model. Given this advice, we hope that

software vendors will add HC2 and HC3 to their programs, ideally making HC3 the

default option.

In White’s classic paper in 1980, he commented on the HCCM by saying that

“It is somewhat surprising that these very useful facts have remained unfamiliar to

practicing econometricians for so long.” We would add that it is unfortunate that

authors of statistical texts and software packages seem unfamiliar with the problem-

atic small sample properties of the original HCCM estimator, and that consequently

it continues to be used in applied work.
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